Forecasting realised volatility from search volume and overnight sentiment: Evidence from China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2022.101734
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Li, Yan & Liang, Chao & Ma, Feng & Wang, Jiqian, 2020. "The role of the IDEMV in predicting European stock market volatility during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 36(C).
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Malcolm Baker & Jeffrey Wurgler, 2006.
"Investor Sentiment and the Cross‐Section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
- Malcolm Baker & Jeffrey Wurgler, 2004. "Investor Sentiment and the Cross-Section of Stock Returns," NBER Working Papers 10449, National Bureau of Economic Research, Inc.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Bekaert, Geert & Hoerova, Marie, 2014.
"The VIX, the variance premium and stock market volatility,"
Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
- Geert Bekaert & Marie Hoerova, 2013. "The VIX, the Variance Premium and Stock Market Volatility," NBER Working Papers 18995, National Bureau of Economic Research, Inc.
- Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Tim Bollerslev & George Tauchen & Hao Zhou, 2009.
"Expected Stock Returns and Variance Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
- Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
- Tim Bollerslev & Hao Zhou, 2007. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2007-17, Department of Economics and Business Economics, Aarhus University.
- Tim Bollerslev & Tzuo Hao & George Tauchen, 2008. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2008-48, Department of Economics and Business Economics, Aarhus University.
- Liu, Li & Zhang, Tao, 2015. "Economic policy uncertainty and stock market volatility," Finance Research Letters, Elsevier, vol. 15(C), pages 99-105.
- Nguyen, Cuong & Hoang, Lai & Shim, Jungwook & Truong, Phuong, 2020. "Internet search intensity, liquidity and returns in emerging markets," Research in International Business and Finance, Elsevier, vol. 52(C).
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014.
"Modeling and predicting the CBOE market volatility index,"
Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data," ERES eres2014_17, European Real Estate Society (ERES).
- Pesaran, M Hashem & Timmermann, Allan, 1992.
"A Simple Nonparametric Test of Predictive Performance,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple Non-Parametric Test Of Predictive Performance," Papers 29, California Los Angeles - Applied Econometrics.
- Berkman, Henk & Koch, Paul D. & Tuttle, Laura & Zhang, Ying Jenny, 2012. "Paying Attention: Overnight Returns and the Hidden Cost of Buying at the Open," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(4), pages 715-741, August.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
- Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Aboody, David & Even-Tov, Omri & Lehavy, Reuven & Trueman, Brett, 2018. "Overnight Returns and Firm-Specific Investor Sentiment," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(2), pages 485-505, April.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Yaojie Zhang & Feng Ma & Tianyi Wang & Li Liu, 2019. "Out‐of‐sample volatility prediction: A new mixed‐frequency approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 669-680, November.
- Li, Yue & Goodell, John W. & Shen, Dehua, 2021. "Comparing search-engine and social-media attentions in finance research: Evidence from cryptocurrencies," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 723-746.
- Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-based commercial real estate forecasting with Google search volume data," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 32(6), pages 540-569, August.
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Paul Hribar & John McInnis, 2012. "Investor Sentiment and Analysts' Earnings Forecast Errors," Management Science, INFORMS, vol. 58(2), pages 293-307, February.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
- Yu-Long Zhou & Ren-Jie Han & Qian Xu & Wei-Ke Zhang, 2018. "Long Short-Term Memory Networks for CSI300 Volatility Prediction with Baidu Search Volume," Papers 1805.11954, arXiv.org.
- Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- repec:arz:wpaper:eres2014-17 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao, Jihong & Jiang, Jiajie & Zhang, Yaojie, 2024. "Policy uncertainty, investor sentiment, and good and bad volatilities in the stock market: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
More about this item
Keywords
Realised volatility; Industry indexes; Market search volume; Market overnight sentiment;All these keywords.
JEL classification:
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s0275531922001222. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.