IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v83y2024i3p45-69.html
   My bibliography  Save this article

CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting

Author

Listed:
  • Alexandra Bozhechkova

    (RANEPA; Gaidar Institute for Economic Policy)

  • Urmat Dzhunkeev

    (Universite Catholique de Louvain; Universite Paris 1 Pantheon-Sorbonne)

Abstract

This paper is devoted to the use of ensemble and neural network machine learning methods, in particular, CatBoost and LightGBM methods and convolutional neural networks to forecast the GDP. The study uses a vintage database to identify the impact of statistical revisions on the accuracy of models. Our results show that a combination of neural network methods retains a predictive advantage over the benchmark models - a first-order autoregression, a dynamic factor model, and a Bayesian vector autoregression - across a panel of countries, including the pandemic crisis periods, based on preliminary and revised data. According to the econometric test for confidence in the set of models, convolutional and recurrent neural networks are among the most accurate methods for GDP forecasting. Revisions of the statistical data lead to an increase in the root mean square errors of the benchmark models and the ensemble and neural network machine learning methods.

Suggested Citation

  • Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
  • Handle: RePEc:bkr:journl:v:83:y:2024:i:3:p:45-69
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/c8b/ocamyrdyrdfpgmlimx00ohmt26wql976/CLARA-and-CARLSON-Combination-Methods-for-GDP-Forecasting.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
    3. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
    4. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    5. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    6. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    7. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    8. Polbin, Andrey, 2014. "Econometric estimation of a structural macroeconomic model for the Russian economy," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 3-29.
    9. Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
    10. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    11. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    12. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    13. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    14. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    15. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    16. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2023. "Forecasting with Economic News," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 708-719, July.
    17. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
    18. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    19. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    20. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    21. Fokin, Nikita, 2021. "The importance of modeling structural breaks in forecasting Russian GDP," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 5-29.
    22. A. Pestova & M. Mamonov., 2016. "A survey of methods for macroeconomic forecasting: Looking for perspective directions in Russia," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    23. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    24. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    25. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    26. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    27. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    28. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    29. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    30. Porshakov, A. & Ponomarenko, A. & Sinyakov, A., 2016. "Nowcasting and Short-Term Forecasting of Russian GDP with a Dynamic Factor Model," Journal of the New Economic Association, New Economic Association, vol. 30(2), pages 60-76.
    31. Anastasiia Pankratova, 2024. "Forecasting Key Macroeconomic Indicators Using DMA and DMS Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 32-52, March.
    32. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    33. Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2022. "A Real-Time Historical Database of Macroeconomic Indicators for Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 88-103, March.
    34. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    35. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    36. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    37. Dmitry Kreptsev & Sergei Seleznev, 2017. "DSGE Model of the Russian Economy with the Banking Sector," Bank of Russia Working Paper Series wps27, Bank of Russia.
    38. Mr. Jean-Francois Dauphin & Mr. Kamil Dybczak & Morgan Maneely & Marzie Taheri Sanjani & Mrs. Nujin Suphaphiphat & Yifei Wang & Hanqi Zhang, 2022. "Nowcasting GDP - A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies," IMF Working Papers 2022/052, International Monetary Fund.
    39. Dmitry Kreptsev & Sergei Seleznev, 2018. "Forecasting for the Russian Economy Using Small-Scale DSGE Models," Russian Journal of Money and Finance, Bank of Russia, vol. 77(2), pages 51-67, June.
    40. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    41. M. Y. Gareev & A. V. Polbin, 2022. "Nowcasting Russia’s key macroeconomic variables using machine learning," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    42. Artur Sharafutdinov, 2023. "Forecasting Russian GDP, Inflation, Interest Rate, and Exchange Rate Using DSGE-VAR Model," Russian Journal of Money and Finance, Bank of Russia, vol. 82(3), pages 62-86, September.
    43. Pestova, Anna (Пестова, Анна) & Mamonov, Mikhail (Мамонов, Михаил), 2016. "Estimating the Influence of Different Shocks on Macroeconomic Indicators and Developing Conditional Forecasts on the Basis of BVAR Model for the Russian Economy [Оценка Влияния Различных Шоков На Д," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 4, pages 56-92, August.
    44. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    45. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    46. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    47. Nikita Fokin & Andrey Polbin, 2019. "Forecasting Russia's Key Macroeconomic Indicators with the VAR-LASSO Model," Russian Journal of Money and Finance, Bank of Russia, vol. 78(2), pages 67-93, June.
    48. Andrey Zubarev & Daniil Lomonosov & Konstantin Rybak, 2022. "Estimation of the Impact of Global Shocks on the Russian Economy and GDP Nowcasting Using a Factor Model," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 49-78, June.
    49. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    50. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    51. Ksenia Mayorova & Nikita Fokin, 2021. "Nowcasting Growth Rates of Russia's Export and Import by Commodity Group," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 34-48, September.
    52. Oleg Semiturkin & Andrey Shevelev, 2023. "Correct Comparison of Predictive Features of Machine Learning Models: The Case of Forecasting Inflation Rates in Siberia," Russian Journal of Money and Finance, Bank of Russia, vol. 82(1), pages 87-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    2. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Anastasia Mogilat & Oleg Kryzhanovskiy & Zhanna Shuvalova & Yaroslav Murashov, 2024. "DYFARUS: Dynamic Factor Model to Forecast GDP by Output Using Input-Output Tables," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 3-25, June.
    5. Anastasiia Pankratova, 2024. "Forecasting Key Macroeconomic Indicators Using DMA and DMS Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 32-52, March.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    8. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    9. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    10. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    12. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    13. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    14. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    15. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    16. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    17. De Pooter, Michiel & Ravazzolo, Francesco & van Dijk, Dick, 2006. "Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information," MPRA Paper 2512, University Library of Munich, Germany, revised 03 Mar 2007.
    18. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    19. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    20. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.

    More about this item

    Keywords

    gradient boosting; neural networks; GDP; BVAR; dynamic factor models; vintage data;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:83:y:2024:i:3:p:45-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.