IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v30y2015i4p596-620.html
   My bibliography  Save this article

The Contribution of Structural Break Models to Forecasting Macroeconomic Series

Author

Listed:
  • Luc Bauwens
  • Gary Koop
  • Dimitris Korobilis
  • Jeroen V.K. Rombouts

Abstract

This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
  • Handle: RePEc:wly:japmet:v:30:y:2015:i:4:p:596-620
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre-Philippe Combes & Thierry Mayer & Jacques-François Thisse, 2008. "Economic Geography: The Integration of Regions and Nations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00311000, HAL.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    7. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    8. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    9. Huriot,Jean-Marie & Thisse,Jacques-François (ed.), 2009. "Economics of Cities," Cambridge Books, Cambridge University Press, number 9780521118279, September.
    10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    12. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    13. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    14. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    15. Belleflamme,Paul & Peitz,Martin, 2015. "Industrial Organization," Cambridge Books, Cambridge University Press, number 9781107687899.
    16. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    17. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
    18. Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), 2008. "High Frequency Financial Econometrics," Studies in Empirical Economics, Springer, number 978-3-7908-1992-2, September.
    19. Eklund, Jana & Kapetanios, George & Price, Simon, 2010. "Forecasting in the presence of recent structural change," Bank of England working papers 406, Bank of England.
    20. Meese, Richard & Geweke, John, 1984. "A Comparison of Autoregressive Univariate Forecasting Procedures for Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 191-200, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:edn:sirdps:274 is not listed on IDEAS
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    4. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    5. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    6. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    7. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    8. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    9. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    11. Franz Ruch & Mehmet Balcilar & Rangan Gupta & Mampho P. Modise, 2020. "Forecasting core inflation: the case of South Africa," Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3004-3022, June.
    12. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    13. AGRELL, Per & KASPERZEC, Roman, 2010. "Dynamic joint investments in supply chains under information asymmetry," LIDAM Discussion Papers CORE 2010085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    15. NESTEROV, Yurii, 2011. "Random gradient-free minimization of convex functions," LIDAM Discussion Papers CORE 2011001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Pierre Pestieau & Maria Racionero, 2015. "Tagging with leisure needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 687-706, December.
    17. M.-L. Leroux & P. Pestieau, 2012. "The political economy of derived pension rights," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 753-776, October.
    18. Cremer, Helmuth & Gahvari, Firouz & Pestieau, Pierre, 2011. "Fertility, human capital accumulation, and the pension system," Journal of Public Economics, Elsevier, vol. 95(11), pages 1272-1279.
    19. Manzi, Jorge & San Martin, Ernesto & Van Bellegem, Sébastien, 2010. "School System Evaluation By Value-Added Analysis under Endogeneity," IDEI Working Papers 631, Institut d'Économie Industrielle (IDEI), Toulouse.
    20. Michel Le Breton & Juan Moreno-Ternero & Alexei Savvateev & Shlomo Weber, 2013. "Stability and fairness in models with a multiple membership," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 673-694, August.
    21. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:30:y:2015:i:4:p:596-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.