IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v33y2009i2p317-328.html
   My bibliography  Save this article

Flexible shrinkage in portfolio selection

Author

Listed:
  • Golosnoy, Vasyl
  • Okhrin, Yarema

Abstract

How to quantify estimation risk is important in portfolio selection. For this purpose we derive the flexible shrinkage estimator for the optimal portfolio weights, which allows dynamic adjustments of model structure. Our estimator is based on grouping the assets in order to capture non-homogeneity of estimation risk. The assets are assigned to groups using a clustering procedure with the number of groups determined from the data. The proposed flexible shrinkage approach exhibits sound and robust performance compared to the popular portfolio selection alternatives.

Suggested Citation

  • Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:317-328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00104-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenyu Wang, 2005. "A Shrinkage Approach to Model Uncertainty and Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 673-705.
    2. Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 55-95.
    3. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    4. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    5. Yarema Okhrin & Wolfgang Schmid, 2008. "Estimation Of Optimal Portfolio Weights," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 249-276.
    6. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    7. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    8. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    9. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    10. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    11. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    12. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.
    13. N. T. Longford, 1999. "Multivariate shrinkage estimation of small area means and proportions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 227-245.
    14. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    15. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    16. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    17. Martin R. Young & Peter J. Lenk, 1998. "Hierarchical Bayes Methods for Multifactor Model Estimation and Portfolio Selection," Management Science, INFORMS, vol. 44(11-Part-2), pages 111-124, November.
    18. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasyl Golosnoy & Nestor Parolya, 2017. "‘To have what they are having’: portfolio choice for mimicking mean–variance savers," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1645-1653, November.
    2. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    3. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    4. Fu, Yufen & Blazenko, George W., 2017. "Normative portfolio theory," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 240-251.
    5. Sukono & Dedi Rosadi & Di Asih I Maruddani & Riza Andrian Ibrahim & Muhamad Deni Johansyah, 2024. "Mechanisms of Stock Selection and Its Capital Weighing in the Portfolio Design Based on the MACD-K-Means-Mean-VaR Model," Mathematics, MDPI, vol. 12(2), pages 1-22, January.
    6. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    7. Titi Purwandari & Riaman & Yuyun Hidayat & Sukono & Riza Andrian Ibrahim & Rizki Apriva Hidayana, 2023. "Selecting and Weighting Mechanisms in Stock Portfolio Design Based on Clustering Algorithm and Price Movement Analysis," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    8. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.
    9. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    10. Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
    11. Bajeux-Besnainou, Isabelle & Bandara, Wachindra & Bura, Efstathia, 2012. "A Krylov subspace approach to large portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1688-1699.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasyl Golosnoy, 2010. "No-transaction bounds and estimation risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 487-493.
    2. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    3. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    4. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    5. Takuya Kinkawa & Nobuo Shinozaki, 2010. "Dominance of a Class of Stein type Estimators for Optimal Portfolio Weights When the Covariance Matrix is Unknown," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(1), pages 19-50, March.
    6. Chiaki Hara & Toshiki Honda, 2014. "Asset Demand and Ambiguity Aversion," KIER Working Papers 911, Kyoto University, Institute of Economic Research.
    7. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    8. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    9. Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.
    10. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    11. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    12. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    13. Andrew Paskaramoorthy & Tim Gebbie & Terence van Zyl, 2021. "The efficient frontiers of mean-variance portfolio rules under distribution misspecification," Papers 2106.10491, arXiv.org, revised Jul 2021.
    14. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    15. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    16. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    17. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    18. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    19. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    20. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:317-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.