Real-time inflation forecasting using non-linear dimension reduction techniques
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2022.03.002
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
References listed on IDEAS
- Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019.
"Characteristics are covariances: A unified model of risk and return,"
Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
- Bryan Kelly & Seth Pruitt & Yinan Su, 2018. "Characteristics Are Covariances: A Unified Model of Risk and Return," NBER Working Papers 24540, National Bureau of Economic Research, Inc.
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013.
"Time-varying combinations of predictive densities using nonlinear filtering,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
- James H. Stock & Mark W. Watson, 2008.
"Phillips curve inflation forecasts,"
Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
- James H. Stock & Mark W. Watson, 2008. "Phillips Curve Inflation Forecasts," NBER Working Papers 14322, National Bureau of Economic Research, Inc.
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- James H. Stock & Mark W. Watson, 2016.
"Core Inflation and Trend Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
- James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023.
"Nowcasting in a pandemic using non-parametric mixed frequency VARs,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
- Florian Huber & Gary Koop & Luca Onorante & Michael Pfarrhofer & Josef Schreiner, 2020. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Papers 2008.12706, arXiv.org, revised Dec 2020.
- Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," JRC Working Papers in Economics and Finance 2021-01, Joint Research Centre, European Commission.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
- Rossi, Barbara & Sekhposyan, Tatevik, 2019.
"Alternative tests for correct specification of conditional predictive densities,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
- Barbara Rossi & Tatevik Sekhposyan, 2015. "Alternative Tests for Correct Specification of Conditional Predictive Densities," Working Papers 758, Barcelona School of Economics.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Bayesian VARs: Specification Choices and Forecast Accuracy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2011. "Bayesian VARs: Specification Choices and Forecast Accuracy," CEPR Discussion Papers 8273, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Papers (Old Series) 1112, Federal Reserve Bank of Cleveland.
- Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014.
"Hierarchical Shrinkage in Time‐Varying Parameter Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
- Belmonte, Miguel A & Koop, Gary & Korobilis, Dimitris, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," SIRE Discussion Papers 2012-68, Scottish Institute for Research in Economics (SIRE).
- BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Miguel A. G. Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Paper series 35_11, Rimini Centre for Economic Analysis.
- Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
- Miguel, Belmonte & Gary, Koop & Dimitris, Korobilis, 2011. "Hierarchical shrinkage in time-varying parameter models," MPRA Paper 31827, University Library of Munich, Germany.
- Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
- Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020.
"Exchange rate predictability and dynamic Bayesian learning,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
- Beckmann, J & Koop, G & Korobilis, D & Schüssler, R, 2017. "Exchange rate predictability and dynamic Bayesian learning," Essex Finance Centre Working Papers 20781, University of Essex, Essex Business School.
- Schüssler, Rainer & Beckmann, Joscha & Koop, Gary & Korobilis, Dimitris, 2018. "Exchange rate predictability and dynamic Bayesian learning," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181523, Verein für Socialpolitik / German Economic Association.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018.
"A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
- Joshua C. C. Chan & Todd E. Clark & Gary Koop, 2015. "A New Model of Inflation, Trend Inflation, and Long-Run Inflation Expectations," Working Papers (Old Series) 1520, Federal Reserve Bank of Cleveland.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013.
"Macroeconomic forecasting and structural change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & D'Agostino, Antonello & Gambetti, Luca, 2010. "Macroeconomic forecasting and structural change," Working Paper Series 1167, European Central Bank.
- D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
- Giannone, Domenico & D’Agostino, Antonello & Gambetti, Luca, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
- Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016.
"Nonlinear forecasting with many predictors using kernel ridge regression,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Geweke, John & Amisano, Gianni, 2011.
"Optimal prediction pools,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
- John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
- Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Florian Huber & Michael Pfarrhofer, 2021.
"Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
- Florian Huber & Michael Pfarrhofer, 2020. "Dynamic shrinkage in time-varying parameter stochastic volatility in mean models," Papers 2005.06851, arXiv.org.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Joshua C. C. Chan, 2017.
"The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
- Joshua C.C. Chan, 2015. "The Stochastic Volatility in Mean Model with Time-Varying Parameters: An Application to Inflation Modeling," CAMA Working Papers 2015-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Florian Huber & Gary Koop & Luca Onorante, 2021.
"Inducing Sparsity and Shrinkage in Time-Varying Parameter Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing sparsity and shrinkage in time-varying parameter models," Working Paper Series 2325, European Central Bank.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Working Papers in Economics 2019-2, University of Salzburg.
- Florian Huber & Gary Koop & Luca Onorante, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Papers 1905.10787, arXiv.org, revised Dec 2019.
- Todd E. Clark & Michael W. McCracken, 2010.
"Averaging forecasts from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
- Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
- Todd E. Clark & Michael W. McCracken, 2006. "Averaging forecasts from VARs with uncertain instabilities," Research Working Paper RWP 06-12, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
- Goulet Coulombe, Philippe & Marcellino, Massimiliano & Stevanović, Dalibor, 2021.
"Can Machine Learning Catch The Covid-19 Recession?,"
National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 71-109, May.
- Marcellino, Massimiliano & Stevanovic, Dalibor & Goulet Coulombe, Philippe, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CEPR Discussion Papers 15867, C.E.P.R. Discussion Papers.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CIRANO Working Papers 2021s-09, CIRANO.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Working Papers 21-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Papers 2103.01201, arXiv.org.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Dean Croushore, 2011.
"Frontiers of Real-Time Data Analysis,"
Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
- Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
- Todd E. Clark, 2011.
"Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
- Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Alessandro Giovannelli, 2012. "Nonlinear Forecasting Using Large Datasets: Evidences on US and Euro Area Economies," CEIS Research Paper 255, Tor Vergata University, CEIS, revised 08 Nov 2012.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Koop, Gary & Korobilis, Dimitris, 2013.
"Large time-varying parameter VARs,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large Time-Varying Parameter VARs," SIRE Discussion Papers 2012-14, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper series 11_12, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2012. "Large time-varying parameter VARs," Working Papers 2012_04, Business School - Economics, University of Glasgow.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Kastner, Gregor, 2016.
"Dealing with Stochastic Volatility in Time Series Using the R Package stochvol,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
- Gregor Kastner, 2019. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Papers 1906.12134, arXiv.org.
- McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
- Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014.
"Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
- Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Marek Jarociński & Michele Lenza, 2018.
"An Inflation‐Predicting Measure of the Output Gap in the Euro Area,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
- Lenza, Michele & Jarociński, Marek, 2016. "An inflation-predicting measure of the output gap in the euro area," Working Paper Series 1966, European Central Bank.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
- Niko Hauzenberger & Florian Huber & Gary Koop & Luca Onorante, 2022.
"Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1904-1918, October.
- Niko Hauzenberger & Florian Huber & Gary Koop & Luca Onorante, 2019. "Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models," Papers 1910.10779, arXiv.org, revised Sep 2021.
- Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
- Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
- Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- McAdam, Peter & McNelis, Paul, 2005.
"Forecasting inflation with thick models and neural networks,"
Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
- McAdam, Peter & McNelis, Paul, 2004. "Forecasting inflation with thick models and neural networks," Working Paper Series 352, European Central Bank.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
- David F. Hendry & Michael P. Clements, 2004.
"Pooling of forecasts,"
Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
- David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Lorin Crawford & Kris C. Wood & Xiang Zhou & Sayan Mukherjee, 2018. "Bayesian Approximate Kernel Regression With Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1710-1721, October.
- Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Jiawen Luo & Shengjie Fu & Oguzhan Cepni & Rangan Gupta, 2024. "Climate Risks and Forecastability of US Inflation: Evidence from Dynamic Quantile Model Averaging," Working Papers 202420, University of Pretoria, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
More about this item
Keywords
Non-linear principal components; Machine learning; Time-varying parameter regression; Density forecasting; Real-time data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:901-921. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.