Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jempfin.2019.08.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Bank of Finland Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Yulei Luo & Eric R. Young, 2016.
"Long‐Run Consumption Risk and Asset Allocation under Recursive Utility and Rational Inattention,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 325-362, March.
- Luo, Yulei & Young, Eric, 2013. "Long-run Consumption Risk and Asset Allocation under Recursive Utility and Rational Inattention," MPRA Paper 52904, University Library of Munich, Germany.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Stivers, Adam, 2018. "Equity premium predictions with many predictors: A risk-based explanation of the size and value factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 126-140.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2015.
"Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper series 05_14, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Xavier Gabaix, 2014.
"A Sparsity-Based Model of Bounded Rationality,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1661-1710.
- Xavier Gabaix, 2011. "A Sparsity-Based Model of Bounded Rationality," NBER Working Papers 16911, National Bureau of Economic Research, Inc.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014.
"Forecasting stock returns under economic constraints,"
Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
- Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2013. "Forecasting Stock Returns under Economic Constraints," CEPR Discussion Papers 9377, C.E.P.R. Discussion Papers.
- Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Zhu, Xiaoneng & Zhu, Jie, 2013. "Predicting stock returns: A regime-switching combination approach and economic links," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4120-4133.
- Christiane Baumeister & Lutz Kilian, 2014.
"What Central Bankers Need To Know About Forecasting Oil Prices,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 869-889, August.
- Baumeister, Christiane & Kilian, Lutz, 2012. "What Central Bankers Need to Know about Forecasting Oil Prices," CEPR Discussion Papers 9118, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015.
"Investor Sentiment Aligned: A Powerful Predictor of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," CEMA Working Papers 676, China Economics and Management Academy, Central University of Finance and Economics.
- Pesaran, M Hashem & Timmermann, Allan, 1992.
"A Simple Nonparametric Test of Predictive Performance,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple Non-Parametric Test Of Predictive Performance," Papers 29, California Los Angeles - Applied Econometrics.
- Lixin Huang & Hong Liu, 2007. "Rational Inattention and Portfolio Selection," Journal of Finance, American Finance Association, vol. 62(4), pages 1999-2040, August.
- Malcolm Baker & Jeffrey Wurgler, 2006.
"Investor Sentiment and the Cross‐Section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
- Malcolm Baker & Jeffrey Wurgler, 2004. "Investor Sentiment and the Cross-Section of Stock Returns," NBER Working Papers 10449, National Bureau of Economic Research, Inc.
- Baetje, Fabian & Menkhoff, Lukas, 2016.
"Equity premium prediction: Are economic and technical indicators unstable?,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," Kiel Working Papers 1987, Kiel Institute for the World Economy (IfW Kiel).
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113079, Verein für Socialpolitik / German Economic Association.
- Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
- Xavier Gabaix & David Laibson & Guillermo Moloche & Stephen Weinberg, 2006. "Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model," American Economic Review, American Economic Association, vol. 96(4), pages 1043-1068, September.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Lutz Kilian & Cheolbeom Park, 2009.
"The Impact Of Oil Price Shocks On The U.S. Stock Market,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
- Kilian, Lutz & Park, Cheolbeom, 2007. "The Impact of Oil Price Shocks on the U.S. Stock Market," CEPR Discussion Papers 6166, C.E.P.R. Discussion Papers.
- Li, Jiahan & Tsiakas, Ilias, 2017.
"Equity premium prediction: The role of economic and statistical constraints,"
Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
- Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
- Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012.
"The short of it: Investor sentiment and anomalies,"
Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
- Robert F. Stambaugh & Jianfeng Yu & Yu Yuan, 2011. "The Short of It: Investor Sentiment and Anomalies," NBER Working Papers 16898, National Bureau of Economic Research, Inc.
- Lutz Kilian & Robert J. Vigfusson, 2017.
"The Role of Oil Price Shocks in Causing U.S. Recessions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
- Lutz Kilian & Robert J. Vigfusson, 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," International Finance Discussion Papers 1114, Board of Governors of the Federal Reserve System (U.S.).
- Lutz Kilian & Robert J. Vigfusson, 2016. "The Role of Oil Price Shocks in Causing U.S. Recessions," CESifo Working Paper Series 5743, CESifo.
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The role of oil price shocks in causing U.S. recessions," CFS Working Paper Series 460, Center for Financial Studies (CFS).
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," CEPR Discussion Papers 10040, C.E.P.R. Discussion Papers.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Ludvigson, Sydney C. & Ng, Serena, 2007.
"The empirical risk-return relation: A factor analysis approach,"
Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
- Sydney C. Ludvigson & Serena Ng, 2005. "The Empirical Risk-Return Relation: A Factor Analysis Approach," NBER Working Papers 11477, National Bureau of Economic Research, Inc.
- Sydney Ludvigson & Serena Ng, 2006. "The Empirical Risk-Return Relation: a factor analysis approach," 2006 Meeting Papers 236, Society for Economic Dynamics.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Narayan, Paresh Kumar & Liu, Ruipeng, 2018. "A new GARCH model with higher moments for stock return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 93-103.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Hou, Keqiang & Mountain, Dean C. & Wu, Ting, 2016. "Oil price shocks and their transmission mechanism in an oil-exporting economy: A VAR analysis informed by a DSGE model," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 21-49.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014.
"Are there gains from pooling real-time oil price forecasts?,"
Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2014. "Are There Gains from Pooling Real-Time Oil Price Forecasts?," Staff Working Papers 14-46, Bank of Canada.
- Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
- Zhang, Yaojie & Zeng, Qing & Ma, Feng & Shi, Benshan, 2019. "Forecasting stock returns: Do less powerful predictors help?," Economic Modelling, Elsevier, vol. 78(C), pages 32-39.
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
- Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019.
"Manager sentiment and stock returns,"
Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
- Fuwei Jiang & Joshua Lee & Xiumin Martin & Guofu Zhou, 2019. "Manager sentiment and stock returns," CEMA Working Papers 677, China Economics and Management Academy, Central University of Finance and Economics.
- Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
- Sydney C. Ludvigson & Serena Ng, 2009.
"Macro Factors in Bond Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
- Sydeny C. Ludvigson & Serena Ng, 2005. "Macro Factors in Bond Risk Premia," NBER Working Papers 11703, National Bureau of Economic Research, Inc.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
- Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
- Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016.
"Short interest and aggregate stock returns,"
Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
- David E. Rapach & Matthew C. Ringgenberg & Guofu Zhou, 2016. "Short interest and aggregate stock returns," CEMA Working Papers 716, China Economics and Management Academy, Central University of Finance and Economics.
- Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
- Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- Andrew B. Abel & Janice C. Eberly & Stavros Panageas, 2013.
"Optimal Inattention to the Stock Market With Information Costs and Transactions Costs,"
Econometrica, Econometric Society, vol. 81(4), pages 1455-1481, July.
- Andrew B. Abel & Janice C. Eberly & Stavros Panageas, 2009. "Optimal Inattention to the Stock Market with Information Costs and Transactions Costs," NBER Working Papers 15010, National Bureau of Economic Research, Inc.
- Stavros Panageas & Janice C. Eberly & Andrew B. Abel, 2011. "Optimal Inattention to the Stock Market with Information Costs and Transactions Costs," 2011 Meeting Papers 102, Society for Economic Dynamics.
- Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
- Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
- Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- repec:zbw:bofrdp:2016_029 is not listed on IDEAS
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
- Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Zhang, Yaojie & Ma, Feng & Zhu, Bo, 2019. "Intraday momentum and stock return predictability: Evidence from China," Economic Modelling, Elsevier, vol. 76(C), pages 319-329.
- Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
- Zhang, Yaojie & Zeng, Qing & Ma, Feng & Shi, Benshan, 2019. "Forecasting stock returns: Do less powerful predictors help?," Economic Modelling, Elsevier, vol. 78(C), pages 32-39.
More about this item
Keywords
Oil price predictability; Out-of-sample forecasts; Lasso; Elastic net; Variable selection;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:54:y:2019:i:c:p:97-117. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.