Predicting relative forecasting performance: An empirical investigation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2019.01.010
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Granziera, Eleonora & Sekhposyan, Tatevik, 2018. "Predicting relative forecasting performance: An empirical investigation," Bank of Finland Research Discussion Papers 23/2018, Bank of Finland.
References listed on IDEAS
- Michael Dotsey & Shigeru Fujita & Tom Stark, 2018.
"Do Phillips Curves Conditionally Help to Forecast Inflation?,"
International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
- Michael Dotsey & Shigeru Fujita & Tom Stark, 2011. "Do Phillips curves conditionally help to forecast inflation?," Working Papers 11-40, Federal Reserve Bank of Philadelphia.
- Michael Dotsey & Shigeru Fujita & Tom Stark, 2015. "Do Phillips curves conditionally help to forecast inflation?," Working Papers 15-16, Federal Reserve Bank of Philadelphia.
- Michael Dotsey & Shigeru Fujita & Tom Stark, 2017. "Do Phillips Curves Conditionally Help to Forecast Inflation?," Working Papers 17-26, Federal Reserve Bank of Philadelphia.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- repec:fip:fedgin:2016-04-11 is not listed on IDEAS
- Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021.
"Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
- Sydney C. Ludvigson & Sai Ma & Serena Ng, 2015. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," NBER Working Papers 21803, National Bureau of Economic Research, Inc.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Kirstin Hubrich & Kenneth D. West, 2010.
"Forecast evaluation of small nested model sets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
- Kirstin Hubrich & Kenneth D. West, 2008. "Forecast Evaluation of Small Nested Model Sets," NBER Working Papers 14601, National Bureau of Economic Research, Inc.
- Hubrich, Kirstin & West, Kenneth D., 2009. "Forecast evaluation of small nested model sets," Working Paper Series 1030, European Central Bank.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
- Clark, Todd E. & McCracken, Michael W., 2001.
"Tests of equal forecast accuracy and encompassing for nested models,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
- Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
- Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
- Lucas F. Husted & John H. Rogers & Bo Sun, 2016. "Measuring Monetary Policy Uncertainty: The Federal Reserve, January 1985-January 2016," IFDP Notes 2016-04-11-2, Board of Governors of the Federal Reserve System (U.S.).
- Fossati, Sebastian, 2017. "Testing for State-Dependent Predictive Ability," Working Papers 2017-9, University of Alberta, Department of Economics.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Ana Beatriz Galvão & Michael T. Owyang, 2018.
"Financial Stress Regimes and the Macroeconomy,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
- Ana B. Galvão & Michael T. Owyang, 2014. "Financial stress regimes and the macroeconomy," Working Papers 2014-20, Federal Reserve Bank of St. Louis.
- Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
- Chauvet, Marcelle & Piger, Jeremy, 2008.
"A Comparison of the Real-Time Performance of Business Cycle Dating Methods,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
- Marcelle Chauvet & Jeremy M. Piger, 2005. "A comparison of the real-time performance of business cycle dating methods," Working Papers 2005-021, Federal Reserve Bank of St. Louis.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016.
"Dynamic prediction pools: An investigation of financial frictions and forecasting performance,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic prediction pools: an investigation of financial frictions and forecasting performance," Staff Reports 695, Federal Reserve Bank of New York.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," NBER Working Papers 20575, National Bureau of Economic Research, Inc.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015.
"Measuring Uncertainty,"
American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2013. "Measuring Uncertainty," NBER Working Papers 19456, National Bureau of Economic Research, Inc.
- Todd Clark & Michael McCracken, 2012.
"Reality Checks and Comparisons of Nested Predictive Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 53-66.
- Todd E. Clark & Michael W. McCracken, 2011. "Reality Checks and Comparisons of Nested Predictive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 53-66, February.
- Nicholas Bloom, 2009.
"The Impact of Uncertainty Shocks,"
Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
- Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014.
"A predictability test for a small number of nested models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
- Hubrich, Kirstin & Granziera, Eleonora & Moon, Hyungsik Roger, 2013. "A predictability test for a small number of nested models," Working Paper Series 1580, European Central Bank.
- Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Lucas F. Husted & John H. Rogers & Bo Sun, 2016. "Measuring Cross Country Monetary Policy Uncertainty," IFDP Notes 2016-11-23, Board of Governors of the Federal Reserve System (U.S.).
- Barbara Rossi & Tatevik Sekhposyan, 2015.
"Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions,"
American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
- Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic uncertainty indices based on nowcast and forecast error distributions," Economics Working Papers 1477, Department of Economics and Business, Universitat Pompeu Fabra.
- Gibbs, Christopher G. & Vasnev, Andrey L., 2024.
"Conditionally optimal weights and forward-looking approaches to combining forecasts,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
- Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
- Tatevik Sekhposyan & Barbara Rossi, 2008.
"Has modelsí forecasting performance for US output growth and inflation changed over time, and when?,"
Working Papers
09-02, Duke University, Department of Economics.
- Barbara Rossi & Tatevik Sekhposyan, 2010. "Has Models' Forecasting Performance for US Output Growth and Inflation Changed over Time, and When?," Working Papers 10-16, Duke University, Department of Economics.
- Serena Ng & Jonathan H. Wright, 2013.
"Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
- Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," NBER Working Papers 19469, National Bureau of Economic Research, Inc.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023.
"Evaluating forecast performance with state dependence,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating forecast performance with state dependence," Economics Working Papers 1800, Department of Economics and Business, Universitat Pompeu Fabra.
- Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
- Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2024. "The bias of the ECB inflation projections: A State-dependent analysis," Bank of Finland Research Discussion Papers 4/2024, Bank of Finland.
- Nima Nonejad, 2021. "Crude oil price point forecasts of the Norwegian GDP growth rate," Empirical Economics, Springer, vol. 61(5), pages 2913-2930, November.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Dongyang Zhang & Cao Wang & Yu Dong, 2023. "How Does Firm ESG Performance Impact Financial Constraints? An Experimental Exploration of the COVID-19 Pandemic," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 219-239, February.
- Nonejad, Nima, 2021. "Predicting equity premium by conditioning on macroeconomic variables: A prediction selection strategy using the price of crude oil," Finance Research Letters, Elsevier, vol. 41(C).
- Nonejad, Nima, 2022. "An interesting finding about the ability of geopolitical risk to forecast aggregate equity return volatility out-of-sample," Finance Research Letters, Elsevier, vol. 47(PB).
- Bańbura, Marta & Bobeica, Elena, 2023.
"Does the Phillips curve help to forecast euro area inflation?,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
- Bańbura, Marta & Bobeica, Elena, 2020. "Does the Phillips curve help to forecast euro area inflation?," Working Paper Series 2471, European Central Bank.
- Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
- James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Makni, Mohammed S., 2023. "Analyzing the impact of COVID-19 on the performance of listed firms in Saudi market," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
- Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
- Philip Beran & Arne Vogler, 2021. "Multi-Day-Ahead Electricity Price Forecasting: A Comparison of fundamental, econometric and hybrid Models," EWL Working Papers 2102, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2021.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
- Sifat, Imtiaz & Zarei, Alireza & Hosseini, Seyedmehdi & Bouri, Elie, 2022. "Interbank liquidity risk transmission to large emerging markets in crisis periods," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
- Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:zbw:bofrdp:2018_023 is not listed on IDEAS
- Granziera, Eleonora & Sekhposyan, Tatevik, 2019.
"Predicting relative forecasting performance: An empirical investigation,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
- Granziera, Eleonora & Sekhposyan, Tatevik, 2018. "Predicting relative forecasting performance : An empirical investigation," Research Discussion Papers 23/2018, Bank of Finland.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
- Mawuli Segnon & Rangan Gupta & Stelios Bekiros & Mark E. Wohar, 2018.
"Forecasting US GNP growth: The role of uncertainty,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 541-559, August.
- Mawuli Segnon & Rangan Gupta & Stelios Bekiros & Mark E. Wohar, 2016. "Forecasting US GNP Growth: The Role of Uncertainty," Working Papers 201667, University of Pretoria, Department of Economics.
- Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Clark, Todd & McCracken, Michael, 2013.
"Advances in Forecast Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201,
Elsevier.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers 2011-025, Federal Reserve Bank of St. Louis.
- Tarassow, Artur, 2019. "Forecasting U.S. money growth using economic uncertainty measures and regularisation techniques," International Journal of Forecasting, Elsevier, vol. 35(2), pages 443-457.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
- Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014.
"A predictability test for a small number of nested models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
- Hubrich, Kirstin & Granziera, Eleonora & Moon, Hyungsik Roger, 2013. "A predictability test for a small number of nested models," Working Paper Series 1580, European Central Bank.
- Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
- Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
- Hännikäinen, Jari, 2017.
"When does the yield curve contain predictive power? Evidence from a data-rich environment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
- Hännikäinen, Jari, 2016. "When does the yield curve contain predictive power? Evidence from a data-rich environment," MPRA Paper 70489, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "When does the yield curve contain predictive power? Evidence from a data-rich environment," Working Papers 1603, Tampere University, Faculty of Management and Business, Economics.
- Firmin Doko Tchatoka & Qazi Haque, 2023.
"On bootstrapping tests of equal forecast accuracy for nested models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," Economics Discussion / Working Papers 20-06, The University of Western Australia, Department of Economics.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," School of Economics and Public Policy Working Papers 2020-03, University of Adelaide, School of Economics and Public Policy.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," CAMA Working Papers 2020-27, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023.
"Evaluating forecast performance with state dependence,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating forecast performance with state dependence," Economics Working Papers 1800, Department of Economics and Business, Universitat Pompeu Fabra.
- Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
More about this item
Keywords
Conditional predictive ability; Model selection; Model averaging; Inflation forecasts; Output growth forecasts;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1636-1657. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.