IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/27406.html
   My bibliography  Save this paper

Belief Distortions and Macroeconomic Fluctuations

Author

Listed:
  • Francesco Bianchi
  • Sydney C. Ludvigson
  • Sai Ma

Abstract

This paper combines a data rich environment with a machine learning algorithm to provide new estimates of time-varying systematic expectational errors ("belief distortions") embedded in survey responses. We find that distortions are large even for professional forecasters, with all respondent-types over-weighting their own beliefs relative to publicly available information. Forecasts of inflation and GDP growth oscillate between optimism and pessimism by large margins, with biases in expectations evolving dynamically in response to cyclical shocks. The results suggest that artificial intelligence algorithms can be productively deployed to correct errors in human judgement and improve predictive accuracy.

Suggested Citation

  • Francesco Bianchi & Sydney C. Ludvigson & Sai Ma, 2020. "Belief Distortions and Macroeconomic Fluctuations," NBER Working Papers 27406, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:27406
    Note: AP CF EFG ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w27406.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bacchetta, Philippe & Mertens, Elmar & van Wincoop, Eric, 2009. "Predictability in financial markets: What do survey expectations tell us?," Journal of International Money and Finance, Elsevier, vol. 28(3), pages 406-426, April.
    2. Jean‐Philippe Bouchaud & Philipp Krüger & Augustin Landier & David Thesmar, 2019. "Sticky Expectations and the Profitability Anomaly," Journal of Finance, American Finance Association, vol. 74(2), pages 639-674, April.
    3. Terrance Odean., 1996. "Volume, Volatility, Price and Profit When All Trader Are Above Average," Research Program in Finance Working Papers RPF-266, University of California at Berkeley.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    6. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    7. Robin Greenwood & Samuel G. Hanson, 2015. "Waves in Ship Prices and Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(1), pages 55-109.
    8. George-Marios Angeletos & Zhen Huo & Karthik A. Sastry, 2021. "Imperfect Macroeconomic Expectations: Evidence and Theory," NBER Macroeconomics Annual, University of Chicago Press, vol. 35(1), pages 1-86.
    9. Khaw, Mel Win & Stevens, Luminita & Woodford, Michael, 2017. "Discrete adjustment to a changing environment: Experimental evidence," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 88-103.
    10. Barberis, Nicholas & Greenwood, Robin & Jin, Lawrence & Shleifer, Andrei, 2015. "X-CAPM: An extrapolative capital asset pricing model," Journal of Financial Economics, Elsevier, vol. 115(1), pages 1-24.
    11. Michael Dotsey, 1998. "The predictive content of the interest rate term spread for future economic growth," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 31-51.
    12. De Bondt, Werner F M & Thaler, Richard H, 1990. "Do Security Analysts Overreact?," American Economic Review, American Economic Association, vol. 80(2), pages 52-57, May.
    13. Kent Daniel & David Hirshleifer, 2015. "Overconfident Investors, Predictable Returns, and Excessive Trading," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 61-88, Fall.
    14. Ann M. Dombrosky & Joseph G. Haubrich, 1996. "Predicting real growth using the yield curve," Economic Review, Federal Reserve Bank of Cleveland, issue Q I, pages 26-35.
    15. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    16. Francesco Bianchi & Cosmin L. Ilut & Martin Schneider, 2018. "Uncertainty Shocks, Asset Supply and Pricing over the Business Cycle," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 810-854.
    17. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    18. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    19. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    20. Larry G. Epstein & Martin Schneider, 2010. "Ambiguity and Asset Markets," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 315-346, December.
    21. Klaus Adam & Albert Marcet & Johannes Beutel, 2017. "Stock Price Booms and Expected Capital Gains," American Economic Review, American Economic Association, vol. 107(8), pages 2352-2408, August.
    22. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    23. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    24. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2018. "Diagnostic Expectations and Credit Cycles," Journal of Finance, American Finance Association, vol. 73(1), pages 199-227, February.
    25. Ulrike Malmendier & Stefan Nagel, 2011. "Depression Babies: Do Macroeconomic Experiences Affect Risk Taking?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 373-416.
    26. Gianni Amisano & John Geweke, 2017. "Prediction Using Several Macroeconomic Models," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.
    27. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    28. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    29. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    30. Morris, Stephen & Shin, Hyun Song & Yildiz, Muhamet, 2016. "Common belief foundations of global games," Journal of Economic Theory, Elsevier, vol. 163(C), pages 826-848.
    31. Xavier Gabaix, 2014. "A Sparsity-Based Model of Bounded Rationality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1661-1710.
    32. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    33. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    34. Robin Greenwood & Andrei Shleifer, 2014. "Expectations of Returns and Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 714-746.
    35. Jeffrey C. Fuhrer, 2018. "Intrinsic expectations persistence: evidence from professional and household survey expectations," Working Papers 18-9, Federal Reserve Bank of Boston.
    36. Gene Amromin & Steven A. Sharpe, 2014. "From the Horse's Mouth: Economic Conditions and Investor Expectations of Risk and Return," Management Science, INFORMS, vol. 60(4), pages 845-866, April.
    37. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    38. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    39. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    40. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    41. Hirshleifer, David & Daniel, Kent, 2015. "Overconfident investors, predictable returns, and excessive trading," MPRA Paper 69002, University Library of Munich, Germany.
    42. Michael Woodford, 2013. "Macroeconomic Analysis Without the Rational Expectations Hypothesis," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 303-346, May.
    43. Pedro Bordalo & Nicola Gennaioli & Rafael La Porta & Andrei Shleifer, 2019. "Diagnostic Expectations and Stock Returns," Journal of Finance, American Finance Association, vol. 74(6), pages 2839-2874, December.
    44. Anmol Bhandari & Jaroslav Borovicka & Paul Ho, 2019. "Survey Data and Subjective Beliefs in Business Cycle Models," Working Paper 19-14, Federal Reserve Bank of Richmond.
    45. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    46. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    47. Kent D. Daniel & David Hirshleifer & Avanidhar Subrahmanyam, 2001. "Overconfidence, Arbitrage, and Equilibrium Asset Pricing," Journal of Finance, American Finance Association, vol. 56(3), pages 921-965, June.
    48. Plosser, Charles I. & Geert Rouwenhorst, K., 1994. "International term structures and real economic growth," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 133-155, February.
    49. repec:bla:jfinan:v:53:y:1998:i:6:p:1887-1934 is not listed on IDEAS
    50. Sharon Kozicki, 1997. "Predicting real growth and inflation with the yield spread," Economic Review, Federal Reserve Bank of Kansas City, vol. 82(Q IV), pages 39-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Born, Benjamin & Enders, Zeno & Menkhoff, Manuel & Müller, Gernot & Niemann, Knut, 2022. "Firm Expectations and News: Micro v Macro," CEPR Discussion Papers 17768, C.E.P.R. Discussion Papers.
    2. Abdalla, Ahmed & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: a dynamic factor model approach," LSE Research Online Documents on Economics 108539, London School of Economics and Political Science, LSE Library.
    3. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    4. Born, Benjamin & Enders, Zeno & Müller, Gernot J., 2023. "On FIRE, news, and expectations," Working Papers 42, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    5. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    6. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    7. Wang, Xi & Liu, Ying & Chen, Zhongfei, 2022. "Monetary policy dysregulation with data distortion," Economic Modelling, Elsevier, vol. 116(C).
    8. Bouaddi, Mohammed & Moutanabbir, Khouzeima, 2023. "Rational distorted beliefs investor; which risk matters?," Finance Research Letters, Elsevier, vol. 51(C).
    9. Nagel, Stefan & Xu, Zhengyang, 2023. "Dynamics of subjective risk premia," Journal of Financial Economics, Elsevier, vol. 150(2).
    10. Mihai, Marius M. & Mansur, Iqbal, 2022. "Forecasting crash risk in U.S. bank returns—The role of credit booms," Journal of Corporate Finance, Elsevier, vol. 76(C).
    11. Segarra-Blasco, Agustí & Teruel, Mercedes & Cattaruzzo, Sebastiano, 2021. "The economic reaction to non-pharmaceutical interventions during Covid-19," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 592-608.
    12. Karnaukh, Nina & Vokata, Petra, 2022. "Growth forecasts and news about monetary policy," Journal of Financial Economics, Elsevier, vol. 146(1), pages 55-70.
    13. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    14. Francesco Bianchi & Martin Lettau & Sydney C. Ludvigson, 2022. "Monetary Policy and Asset Valuation," Journal of Finance, American Finance Association, vol. 77(2), pages 967-1017, April.
    15. Dmitri V. Vinogradov & Michael J. Lamla & Yousef Makhlouf, 2024. "Survey-based expectations and uncertainty attitudes," Working Papers 2024_02, Business School - Economics, University of Glasgow.
    16. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "What is the Predictive Value of SPF Point and Density Forecasts?," Working Papers 22-37, Federal Reserve Bank of Cleveland.
    17. Gregory, Richard Paul, 2022. "ESG scores and the response of the S&P 1500 to monetary and fiscal policy during the Covid-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 446-456.
    18. Wycliffe Obwori Alwago, 2023. "The nexus between health expenditure, life expectancy, and economic growth: ARDL model analysis for Kenya," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(5), pages 1064-1085, June.
    19. Giulia Piccillo & Poramapa Poonpakdee, 2023. "Ambiguous Business Cycles, Recessions and Uncertainty: A Quantitative Analysis," CESifo Working Paper Series 10646, CESifo.
    20. Robert J. Tetlow, 2022. "How Large is the Output Cost of Disinflation?," Finance and Economics Discussion Series 2022-079, Board of Governors of the Federal Reserve System (U.S.).
    21. Abdalla, Ahmed M. & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: A dynamic factor model approach," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 260-280.
    22. José, Barrales-Ruíz & Pino, Gabriel, 2024. "On the effect of short-run and long-run US economic expectations on oil and gold volatilities," Resources Policy, Elsevier, vol. 91(C).
    23. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    24. Giulia Piccillo & Poramapa Poonpakdee, 2021. "Effects of Macro Uncertainty on Mean Expectation and Subjective Uncertainty: Evidence from Households and Professional Forecasters," CESifo Working Paper Series 9486, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Bordalo & Nicola Gennaioli & Rafael La Porta & Andrei Shleifer, 2024. "Belief Overreaction and Stock Market Puzzles," Journal of Political Economy, University of Chicago Press, vol. 132(5), pages 1450-1484.
    2. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    3. Luis Armona & Andreas Fuster & Basit Zafar, 2019. "Home Price Expectations and Behaviour: Evidence from a Randomized Information Experiment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(4), pages 1371-1410.
    4. Xavier Gabaix, 2017. "Behavioral Inattention," NBER Working Papers 24096, National Bureau of Economic Research, Inc.
    5. Oesinghaus, Andreas, 2024. "Analysts’ extrapolative expectations in the cross-section," Journal of Economics and Business, Elsevier, vol. 130(C).
    6. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    7. Jean-Paul L’Huillier & Sanjay R Singh & Donghoon Yoo, 2024. "Incorporating Diagnostic Expectations into the New Keynesian Framework," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(5), pages 3013-3046.
    8. Adam, Klaus & Matveev, Dmitry & Nagel, Stefan, 2021. "Do survey expectations of stock returns reflect risk adjustments?," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 723-740.
    9. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    10. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    11. Andrade, Philippe & Gautier, Erwan & Mengus, Eric, 2023. "What matters in households’ inflation expectations?," Journal of Monetary Economics, Elsevier, vol. 138(C), pages 50-68.
    12. ÅžimÅŸek, Alp, 2021. "The Macroeconomics of Financial Speculation," CEPR Discussion Papers 15733, C.E.P.R. Discussion Papers.
    13. Bouaddi, Mohammed & Moutanabbir, Khouzeima, 2023. "Rational distorted beliefs investor; which risk matters?," Finance Research Letters, Elsevier, vol. 51(C).
    14. Jin, Lawrence J. & Sui, Pengfei, 2022. "Asset pricing with return extrapolation," Journal of Financial Economics, Elsevier, vol. 145(2), pages 273-295.
    15. Karnaukh, Nina & Vokata, Petra, 2022. "Growth forecasts and news about monetary policy," Journal of Financial Economics, Elsevier, vol. 146(1), pages 55-70.
    16. Hagenhoff, Tim & Lustenhouwer, Joep, 2020. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," BERG Working Paper Series 163, Bamberg University, Bamberg Economic Research Group.
    17. George-Marios Angeletos & Chen Lian, 2018. "Forward Guidance without Common Knowledge," American Economic Review, American Economic Association, vol. 108(9), pages 2477-2512, September.
    18. Peter Andrebriq & Carlo Pizzinelli & Christopher Roth & Johannes Wohlfart, 2022. "Subjective Models of the Macroeconomy: Evidence From Experts and Representative Samples," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 2958-2991.
    19. Stefano Giglio & Matteo Maggiori & Johannes Stroebel & Stephen Utkus, 2021. "Five Facts about Beliefs and Portfolios," American Economic Review, American Economic Association, vol. 111(5), pages 1481-1522, May.
    20. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2018. "Diagnostic Expectations and Credit Cycles," Journal of Finance, American Finance Association, vol. 73(1), pages 199-227, February.

    More about this item

    JEL classification:

    • E03 - Macroeconomics and Monetary Economics - - General - - - Behavioral Macroeconomics
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E7 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:27406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.