IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.17419.html
   My bibliography  Save this paper

On random number generators and practical market efficiency

Author

Listed:
  • Ben Moews

Abstract

Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a well-tested pseudo-random number generator, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.

Suggested Citation

  • Ben Moews, 2023. "On random number generators and practical market efficiency," Papers 2305.17419, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2305.17419
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.17419
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    2. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    3. Marsaglia, George & Tsang, Wai Wan, 2002. "Some Difficult-to-pass Tests of Randomness," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i03).
    4. Kwok, H.S. & Tang, Wallace K.S., 2007. "A fast image encryption system based on chaotic maps with finite precision representation," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1518-1529.
    5. Michael A. Noakes & Kanshukan Rajaratnam, 2016. "Testing market efficiency on the Johannesburg Stock Exchange using the overlapping serial test," Annals of Operations Research, Springer, vol. 243(1), pages 273-300, August.
    6. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    7. Morgan, I G, 1976. "Stock Prices and Heteroscedasticity," The Journal of Business, University of Chicago Press, vol. 49(4), pages 496-508, October.
    8. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    9. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    10. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    11. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2019. "Quantile forecast combinations in realised volatility prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1720-1733, October.
    12. Paul Kofman & Ian G. Sharpe, 2003. "Using Multiple Imputation in the Analysis of Incomplete Observations in Finance," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 216-249.
    13. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    14. Aktas, Nihat & Andries, Kathleen & Croci, Ettore & Ozdakak, Ali, 2019. "Stock market development and the financing role of IPOs in acquisitions," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 25-38.
    15. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    16. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    17. Paul A. Samuelson, 1973. "Proof That Properly Discounted Present Values of Assets Vibrate Randomly," Bell Journal of Economics, The RAND Corporation, vol. 4(2), pages 369-374, Autumn.
    18. Marsaglia, George, 2005. "Monkeying with the Goodness-of-Fit Test," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i13).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    2. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    6. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    7. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    8. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    9. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    10. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    11. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    12. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    13. Ferreira, Paulo, 2019. "Assessing the relationship between dependence and volume in stock markets: A dynamic analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 90-97.
    14. Brandouy, Olivier & Delahaye, Jean-Paul & Ma, Lin & Zenil, Hector, 2014. "Algorithmic complexity of financial motions," Research in International Business and Finance, Elsevier, vol. 30(C), pages 336-347.
    15. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    16. Xiangmei Fan & Yanrui Wu & Nicolaas Groenewold, 2003. "The Stock Return-volume Relation and Policy Effects: The Case of the Chinese Energy Sector," Economics Discussion / Working Papers 03-15, The University of Western Australia, Department of Economics.
    17. Michael A. Noakes & Kanshukan Rajaratnam, 2016. "Testing market efficiency on the Johannesburg Stock Exchange using the overlapping serial test," Annals of Operations Research, Springer, vol. 243(1), pages 273-300, August.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Kapil Gupta & Balwinder Singh, 2009. "Information Memory and Pricing Efficiency of Futures Contracts," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 8(2), pages 191-250, May.
    20. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.17419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.