IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i3p823-835.html
   My bibliography  Save this article

Forecasting dynamic return distributions based on ordered binary choice

Author

Listed:
  • Anatolyev, Stanislav
  • Baruník, Jozef

Abstract

We present a simple approach to the forecasting of conditional probability distributions of asset returns. We work with a parsimonious specification of ordered binary choice regressions that imposes a connection on sign predictability across different quantiles. The model forecasts the future conditional probability distributions of returns quite precisely when using a past indicator and a past volatility proxy as predictors. The direct benefits of the model are revealed in an empirical application to the 29 most liquid U.S. stocks. The forecast probability distribution is translated to significant economic gains in a simple trading strategy. Our approach can also be useful in many other applications in which conditional distribution forecasts are desired.

Suggested Citation

  • Anatolyev, Stanislav & Baruník, Jozef, 2019. "Forecasting dynamic return distributions based on ordered binary choice," International Journal of Forecasting, Elsevier, vol. 35(3), pages 823-835.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:823-835
    DOI: 10.1016/j.ijforecast.2019.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019300445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    3. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    5. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    6. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    7. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    8. González-Rivera, Gloria & Sun, Yingying, 2015. "Generalized autocontours: Evaluation of multivariate density models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.
    9. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    10. repec:bla:jfinan:v:44:y:1989:i:5:p:1177-89 is not listed on IDEAS
    11. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
    14. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    16. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    17. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    18. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    19. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    20. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    21. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    22. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    23. Torsten Hothorn & Thomas Kneib & Peter Bühlmann, 2014. "Conditional transformation models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 3-27, January.
    24. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    25. Anatolyev, Stanislav & Gospodinov, Nikolay, 2010. "Modeling Financial Return Dynamics via Decomposition," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 232-245.
    26. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    27. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    28. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Anatolyev, 2021. "Directional news impact curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 94-107, January.
    2. Jozef Barunik & Lubos Hanus, 2023. "Learning Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Oct 2023.
    3. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    4. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    5. Baruník, Jozef & Hanus, Luboš, 2024. "Fan charts in era of big data and learning," Finance Research Letters, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    2. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    3. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    4. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    5. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
    6. Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
    7. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, New Economic School (NES).
    8. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
    9. Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    10. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    11. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    12. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    13. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    14. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    15. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    16. Aslanidis, Nektarios & Christiansen, Charlotte, 2014. "Quantiles of the realized stock–bond correlation and links to the macroeconomy," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 321-331.
    17. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    18. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    19. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    20. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:823-835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.