IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v68y2021ics0927538x21000251.html
   My bibliography  Save this article

The importance of large shocks to return predictability

Author

Listed:
  • Diaz, Juan
  • Duarte, Diogo
  • Galindo, Hamilton
  • Montecinos, Alexis
  • Truffa, Santiago

Abstract

Based on the rare disasters literature of Barro and Ursúa (2008), Barro and Ursúa (2009), and Barro and Jin (2011), we show that the predictability of the S&P500 returns increases substantially when we control the regressions for major historical events, such as the Great Depression, World War I, World War II, the oil crisis of 1973-1974, and the subprime mortgage crisis. Controlling for these large shocks, the model with the dividend-earnings ratio as the regressor reaches an in-sample performance with an R2 of 27.6%, while all the other models increase their R2 after correcting for these large shocks. In addition, we show that controlling for major historical events improves the prediction performance, reducing the RSME in all of the 21 models we investigate. We check the robustness of our method by investigating the effects of controlling for the China trade shock of 2001 on the R2 and RMSE of the bias-corrected regressions. Our findings suggest that correcting for these shocks is critical to improve prediction performance.

Suggested Citation

  • Diaz, Juan & Duarte, Diogo & Galindo, Hamilton & Montecinos, Alexis & Truffa, Santiago, 2021. "The importance of large shocks to return predictability," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:pacfin:v:68:y:2021:i:c:s0927538x21000251
    DOI: 10.1016/j.pacfin.2021.101518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X21000251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2021.101518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David H. Autor & David Dorn & Gordon H. Hanson, 2016. "The China Shock: Learning from Labor-Market Adjustment to Large Changes in Trade," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 205-240, October.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. repec:bla:jfinan:v:53:y:1998:i:5:p:1563-1587 is not listed on IDEAS
    4. Robert J. Barro & Tao Jin, 2011. "On the Size Distribution of Macroeconomic Disasters," Econometrica, Econometric Society, vol. 79(5), pages 1567-1589, September.
    5. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    6. Kyle Handley & Nuno Limão, 2018. "Policy Uncertainty, Trade, and Welfare: Theory and Evidence for China and the United States," World Scientific Book Chapters, in: Policy Externalities and International Trade Agreements, chapter 5, pages 123-175, World Scientific Publishing Co. Pte. Ltd..
    7. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    8. John Y. Campbell & Robert J. Shiller, 1988. "Stock Prices, Earnings and Expected Dividends," Cowles Foundation Discussion Papers 858, Cowles Foundation for Research in Economics, Yale University.
    9. Robert C. Feenstra & Akira Sasahara, 2018. "The ‘China shock,’ exports and U.S. employment: A global input–output analysis," Review of International Economics, Wiley Blackwell, vol. 26(5), pages 1053-1083, November.
    10. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    11. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    12. Brandt, Loren & Morrow, Peter M., 2017. "Tariffs and the organization of trade in China," Journal of International Economics, Elsevier, vol. 104(C), pages 85-103.
    13. Daron Acemoglu & David Autor & David Dorn & Gordon H. Hanson & Brendan Price, 2016. "Import Competition and the Great US Employment Sag of the 2000s," Journal of Labor Economics, University of Chicago Press, vol. 34(S1), pages 141-198.
    14. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    15. Barro, Robert J. & Ursúa, José F., 2017. "Stock-market crashes and depressions," Research in Economics, Elsevier, vol. 71(3), pages 384-398.
    16. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    17. David H. Autor & David Dorn & Gordon H. Hanson, 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," American Economic Review, American Economic Association, vol. 103(6), pages 2121-2168, October.
    18. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    19. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    20. Francois Gourio, 2012. "Disaster Risk and Business Cycles," American Economic Review, American Economic Association, vol. 102(6), pages 2734-2766, October.
    21. Justin R. Pierce & Peter K. Schott, 2016. "The Surprisingly Swift Decline of US Manufacturing Employment," American Economic Review, American Economic Association, vol. 106(7), pages 1632-1662, July.
    22. Xavier Gabaix, 2008. "Variable Rare Disasters: A Tractable Theory of Ten Puzzles in Macro-finance," American Economic Review, American Economic Association, vol. 98(2), pages 64-67, May.
    23. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    24. Worawuth Kongsilp & Cesario Mateus, 2017. "Volatility risk and stock return predictability on global financial crises," China Finance Review International, Emerald Group Publishing Limited, vol. 7(1), pages 33-66, February.
    25. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    26. Ghulam Abbas & Shouyang Wang, 2020. "Does macroeconomic uncertainty really matter in predicting stock market behavior? A comparative study on China and USA," China Finance Review International, Emerald Group Publishing Limited, vol. 10(4), pages 393-427, May.
    27. Cochrane, John H, 1991. "Production-Based Asset Pricing and the Link between Stock Returns and Economic Fluctuations," Journal of Finance, American Finance Association, vol. 46(1), pages 209-237, March.
    28. Robert J. Barro & Jose F. Ursua, 2008. "Macroeconomic Crises since 1870," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 39(1 (Spring), pages 255-350.
    29. Francois Gourio, 2008. "Disasters and Recoveries," American Economic Review, American Economic Association, vol. 98(2), pages 68-73, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Darien & Kilic, Mete, 2019. "Gold, platinum, and expected stock returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 50-75.
    2. Li, Xiyang & Chen, Xiaoyue & Li, Bin & Singh, Tarlok & Shi, Kan, 2022. "Predictability of stock market returns: New evidence from developed and developing countries," Global Finance Journal, Elsevier, vol. 54(C).
    3. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    4. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.
    5. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    6. Della Corte, Pasquale & Sarno, Lucio & Valente, Giorgio, 2010. "A century of equity premium predictability and the consumption-wealth ratio: An international perspective," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 313-331, June.
    7. Schrimpf, Andreas, 2010. "International stock return predictability under model uncertainty," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1256-1282, November.
    8. Pierre Giot & Mikael Petitjean, 2009. "Short-term market timing using the bond-equity yield ratio," The European Journal of Finance, Taylor & Francis Journals, vol. 15(4), pages 365-384.
    9. Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
    10. Yufeng Han, 2010. "On the Economic Value of Return Predictability," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 1-33, May.
    11. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    12. Hsu, Po-Hsuan, 2009. "Technological innovations and aggregate risk premiums," Journal of Financial Economics, Elsevier, vol. 94(2), pages 264-279, November.
    13. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    14. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    15. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    16. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "The role of time‐varying rare disaster risks in predicting bond returns and volatility," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 327-340, July.
    17. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    18. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    19. Favero, Carlo A. & Gozluklu, Arie E. & Tamoni, Andrea, 2011. "Demographic Trends, the Dividend-Price Ratio, and the Predictability of Long-Run Stock Market Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1493-1520, October.
    20. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.

    More about this item

    Keywords

    Return predictability; Bias correction; Directional trading; In- and out-of-sample forecast; China trade shock;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:68:y:2021:i:c:s0927538x21000251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.