Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally
Author
Abstract
Suggested Citation
DOI: 10.1016/j.irfa.2022.102299
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
- Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
- Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Ron Alquist & Lutz Kilian, 2010.
"What do we learn from the price of crude oil futures?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
- Kilian, Lutz & Alquist, Ron, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Lutz Kilian & Cheolbeom Park, 2009.
"The Impact Of Oil Price Shocks On The U.S. Stock Market,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
- Kilian, Lutz & Park, Cheolbeom, 2007. "The Impact of Oil Price Shocks on the U.S. Stock Market," CEPR Discussion Papers 6166, C.E.P.R. Discussion Papers.
- Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
- Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
- Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
- An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2016.
"Intraday volatility interaction between the crude oil and equity markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 1-13.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Intraday volatility interaction between the crude oil and equity markets," Working Papers fe_2015_14, Deakin University, Department of Economics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
- Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Fenghua Wen & Yupei Zhao & Minzhi Zhang & Chunyan Hu, 2019. "Forecasting realized volatility of crude oil futures with equity market uncertainty," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6411-6427, December.
- Salisu, Afees A. & Gupta, Rangan, 2021.
"Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach,"
Global Finance Journal, Elsevier, vol. 48(C).
- Afees A. Salisu & Rangan Gupta, 2019. "Oil Shocks and Stock Market Volatility of the BRICS: A GARCH-MIDAS Approach," Working Papers 201976, University of Pretoria, Department of Economics.
- Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
- Cortazar, Gonzalo & Schwartz, Eduardo S., 2003. "Implementing a stochastic model for oil futures prices," Energy Economics, Elsevier, vol. 25(3), pages 215-238, May.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
- Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
- Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
- Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016.
"The forecast combination puzzle: A simple theoretical explanation,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2014. "The Forecast Combination Puzzle: A Simple Theoretical Explanation," Tinbergen Institute Discussion Papers 14-127/III, Tinbergen Institute.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2016. "The forecast combination puzzle: a simple theoretical explanation," Working Papers of Department of Decision Sciences and Information Management, Leuven 532152, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
- Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
- Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
- Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Brandt, Michael W. & Gao, Lin, 2019. "Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 64-94.
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- Lyu, Yongjian & Wei, Yu & Hu, Yingyi & Yang, Mo, 2021. "Good volatility, bad volatility and economic uncertainty: Evidence from the crude oil futures market," Energy, Elsevier, vol. 222(C).
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Svetlana Borovkova & Ioannis Tsiamas, 2019. "An ensemble of LSTM neural networks for high‐frequency stock market classification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 600-619, September.
- Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Gonzalo Cortazar & Lorenzo Naranjo, 2006. "An N‐factor Gaussian model of oil futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 243-268, March.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
- Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
- Hamilton, James D. & Wu, Jing Cynthia, 2014.
"Risk premia in crude oil futures prices,"
Journal of International Money and Finance, Elsevier, vol. 42(C), pages 9-37.
- James D. Hamilton & Jing Cynthia Wu, 2013. "Risk Premia in Crude Oil Futures Prices," NBER Working Papers 19056, National Bureau of Economic Research, Inc.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Filis, George, 2010. "Macro economy, stock market and oil prices: Do meaningful relationships exist among their cyclical fluctuations?," Energy Economics, Elsevier, vol. 32(4), pages 877-886, July.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Liu, Bing-Yue & Ji, Qiang & Fan, Ying, 2017. "Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying mixed copula model," Energy Economics, Elsevier, vol. 68(C), pages 53-65.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Jian Yang & Yinggang Zhou, 2020. "Return and volatility transmission between China's and international crude oil futures markets: A first look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 860-884, June.
- Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Sami Ben Jabeur & Amir Sadaaoui & Asma Sghaier & Riadh Aloui, 2020. "Machine learning models and cost-sensitive decision trees for bond rating prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1161-1179, August.
- Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
- Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
- Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
- Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
- Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
- Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
- Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
More about this item
Keywords
Machine learning; Combination forecast; Realized volatility; Oil futures market; Crisis periods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002538. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.