IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v231y2011i1p82-106.html
   My bibliography  Save this article

Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production

Author

Listed:
  • Carstensen Kai

    (Ifo Institute for Economic Research and University of Munich, Poschingerstraße 5, 81679 Munich, Germany)

  • Wohlrabe Klaus

    (Ifo Institute for Economic Research, Poschingerstraße 5, 81679 Munich, Germany)

  • Ziegler Christina

    (University of Leipzig, Grimmaische Straße 12, 04109 Leipzig, Germany)

Abstract

In this paper we assess the information content of seven widely cited early indicators for the euro area with respect to forecasting area-wide industrial production. To this end, we use various tests that are designed to compare competing forecast models. In addition to the standard Diebold-Mariano test, we employ tests that account for specific problems typically encountered in forecast exercises. Specifically, we pay attention to nested model structures, we alleviate the problem of data snooping arising from multiple pairwise testing, and we analyze the structural stability in the relative forecast performance of one indicator compared to a benchmark model. Moreover, we consider loss functions that overweight forecast errors in booms and recessions to check-whether a specific indicator that appears to be a good choice on average is also preferable in times of economic stress. We find that none of this indicators uniformly dominates all its competitors. The optimal choice rather depends on the specific forecast situation and the loss function of the user. For 1-month forecasts the business climate indicator of the European Commission and the OECD composite leading indicator generally work well, for 6-month forecasts the OECD composite leading indicator performs very good by all criteria, and for 12-month forecasts the FAZ-Euro indicator published by the Frankfurter Allgemeine Zeitung is the only one that can beat the benchmark AR(1) model.

Suggested Citation

  • Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
  • Handle: RePEc:jns:jbstat:v:231:y:2011:i:1:p:82-106
    DOI: 10.1515/jbnst-2011-0107
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2011-0107
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2011-0107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    4. Ataman Ozyildirim & Brian Schaitkin & Victor Zarnowitz, 2010. "Business cycles in the euro area defined with coincident economic indicators and predicted with leading economic indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 6-28.
    5. Giuseppe Parigi & Roberto Golinelli & Giorgio Bodo, 2000. "Forecasting industrial production in the Euro area," Empirical Economics, Springer, vol. 25(4), pages 541-561.
    6. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    7. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    8. Dick van Dijk & Philip Hans Franses, 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
    9. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    10. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    11. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    12. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    13. Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
    14. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    17. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    18. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    19. Tatevik Sekhposyan & Barbara Rossi, 2008. "Has modelsí forecasting performance for US output growth and inflation changed over time, and when?," Working Papers 09-02, Duke University, Department of Economics.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    22. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    23. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    24. repec:rim:rimwps:49-07 is not listed on IDEAS
    25. Fichtner, Ferdinand & Rüffer, Rasmus & Schnatz, Bernd, 2009. "Leading indicators in a globalised world," Working Paper Series 1125, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    3. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    4. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
    5. repec:ipg:wpaper:2014-471 is not listed on IDEAS
    6. Christoph Schinke, 2016. "Wealth and Politics: Studies on Inter Vivos Transfers and Partisan Effects," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 67.
    7. Jan-Christoph Rülke, 2011. "Do private sector forecasters desire to deviate from the German council of economic experts?," WHU Working Paper Series - Economics Group 11-04, WHU - Otto Beisheim School of Management.
    8. Pablo Duarte & Bernd Süssmuth, 2018. "Implementing an Approximate Dynamic Factor Model to Nowcast GDP Using Sensitivity Analysis," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 127-141, April.
    9. Elsayyad, May & Konrad, Kai A., 2012. "Fighting multiple tax havens," Journal of International Economics, Elsevier, vol. 86(2), pages 295-305.
    10. Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016. "Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
    11. Ha Quyen Ngo & Niklas Potrafke & Marina Riem & Christoph Schinke, 2018. "Ideology and Dissent among Economists: The Joint Economic Forecast of German Economic Research Institutes," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 44(1), pages 135-152, January.
    12. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    13. Anna Billharz & Steffen Elstner & Marcus Jüppner, 2012. "Methoden der ifo Kurzfristprognose am Beispiel der Ausrüstungsinvestitionen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(21), pages 24-33, November.
    14. Brückbauer, Frank & Schröder, Michael, 2021. "Data resource profile: The ZEW FMS dataset," ZEW Discussion Papers 21-100, ZEW - Leibniz Centre for European Economic Research.
    15. Yashkir, Olga & Yashkir, Yuriy, 2013. "Monitoring of Credit Risk through the Cycle: Risk Indicators," MPRA Paper 46402, University Library of Munich, Germany.
    16. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(22), pages 27-35, November.
    17. Rülke Jan-Christoph, 2012. "Do Private Sector Forecasters Desire to Deviate From the German Council of Economic Experts?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 414-428, August.
    18. Marina Riem, 2017. "Essays on the Behavior of Firms and Politicians," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 73.
    19. Katja Rietzler & Sabine Stephan, 2012. "Monthly recession predictions in real time: A density forecast approach for German industrial production," IMK Working Paper 94-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    20. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    6. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    7. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    8. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    9. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    10. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    11. Nonejad, Nima, 2020. "Crude oil price changes and the United Kingdom real gross domestic product growth rate: An out-of-sample investigation," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    12. repec:zbw:bofitp:2015_012 is not listed on IDEAS
    13. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    14. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    15. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    16. Brooks, Chris & Burke, Simon P. & Stanescu, Silvia, 2016. "Finite sample weighting of recursive forecast errors," International Journal of Forecasting, Elsevier, vol. 32(2), pages 458-474.
    17. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 101-121.
    18. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    19. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    20. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
    21. Sekkel, Rodrigo M., 2015. "Balance sheets of financial intermediaries: Do they forecast economic activity?," International Journal of Forecasting, Elsevier, vol. 31(2), pages 263-275.

    More about this item

    Keywords

    Weighted loss; leading indicators; euro area; forecasting; Weighted loss; leading indicators; euro area; forecasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:231:y:2011:i:1:p:82-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.