IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i11p2676-2692.html
   My bibliography  Save this article

Forecasting volatility under fractality, regime-switching, long memory and student-t innovations

Author

Listed:
  • Lux, Thomas
  • Morales-Arias, Leonardo

Abstract

The Markov-switching Multifractal model of asset returns with Student-t innovations (MSM-t henceforth) is introduced as an extension to the Markov-switching Multifractal model of asset returns (MSM). The MSM-t can be estimated via Maximum Likelihood (ML) and Generalized Method of Moments (GMM) and volatility forecasting can be performed via Bayesian updating (ML) or best linear forecasts (GMM). Monte Carlo simulations show that using GMM plus linear forecasts leads to minor losses in efficiency compared to optimal Bayesian forecasts based on ML estimates. The forecasting capability of the MSM-t model is evaluated empirically in a comprehensive panel forecasting analysis with three different cross-sections of assets at the country level (all-share equity indices, bond indices and real estate security indices). Empirical forecasts of the MSM-t model are compared to those obtained from its Gaussian counterparts and other volatility models of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family. In terms of mean absolute errors (mean squared errors), the MSM-t (Gaussian MSM) dominates all other models at most forecasting horizons for the various asset classes considered. Furthermore, forecast combinations obtained from the MSM and (Fractionally Integrated) GARCH models provide an improvement upon forecasts from single models.

Suggested Citation

  • Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2676-2692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00107-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Wu, Ping-Tsung & Shieh, Shwu-Jane, 2007. "Value-at-Risk analysis for long-term interest rate futures: Fat-tail and long memory in return innovations," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 248-259, March.
    4. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    7. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    8. Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007. "True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    11. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    12. Terence Mills, 1997. "Stylized facts on the temporal and distributional properties of daily FT-SE returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 599-604.
    13. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    17. François Schmitt & Daniel Schertzer & Shaun Lovejoy, 1999. "Multifractal analysis of foreign exchange data," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 15(1), pages 29-53, March.
    18. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    19. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    20. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    21. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    22. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    23. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    24. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    25. I.-Yuan Chuang & Jin-Ray Lu & Pei-Hsuan Lee, 2007. "Forecasting volatility in the financial markets: a comparison of alternative distributional assumptions," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1051-1060.
    26. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
    2. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    3. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    4. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    5. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    6. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015. "Modeling and forecasting crude oil price volatility: Evidence from historical and recent data," FinMaP-Working Papers 31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    7. Lux, Thomas, 2003. "The multi-fractal model of asset returns: Its estimation via GMM and its use for volatility forecasting," Economics Working Papers 2003-13, Christian-Albrechts-University of Kiel, Department of Economics.
    8. Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW Kiel).
    9. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    10. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    11. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    12. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    14. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    16. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    17. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    19. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    20. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2676-2692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.