IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0512.html
   My bibliography  Save this article

Time series forecasting under structural breaks

Author

Listed:
  • Skrobotov, Anton

    (RANEPA, Moscow, Russian Federation;)

Abstract

In this paper, we overview the forecasting methods in the presence of structural breaks. Methods for selecting a forecast window that includes the break date, weighted average methods of pre- and post-break estimators, and averaging-based methods are discussed. The considered methods are compared in terms of predictive power using Russian macroeconomic time series. The results demonstrate the superiority of forecasts that take into account the presence of break.

Suggested Citation

  • Skrobotov, Anton, 2024. "Time series forecasting under structural breaks," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 76, pages 120-139.
  • Handle: RePEc:ris:apltrx:0512
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2024_76_120-139.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Chudik & M. Hashem Pesaran & Mahrad Sharifvaghefi, 2020. "Variable Selection in High Dimensional Linear Regressions with Parameter Instability," Globalization Institute Working Papers 394, Federal Reserve Bank of Dallas, revised 05 Aug 2024.
    2. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    3. Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
    4. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    5. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    6. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    7. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    8. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    9. Pesaran, M. Hashem & Pick, Andreas, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
    10. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal forecast under structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
    11. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.
    12. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    13. Stanislav Anatolyev & Victor Kitov, 2007. "Using All Observations when Forecasting under Structural Breaks," Finnish Economic Papers, Finnish Economic Association, vol. 20(2), pages 166-176, Autumn.
    14. Skrobotov, Anton (Скроботов, Антон), 2021. "Structural breaks in cointegration models [Структурные Сдвиги В Моделях Коинтеграции]," Working Papers w20220130, Russian Presidential Academy of National Economy and Public Administration.
    15. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    16. Skrobotov, Anton, 2021. "Structural breaks in cointegration models: Multivariate case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 83-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    2. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    3. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    4. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal forecast under structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
    5. Biolsi, Christopher, 2021. "Labor productivity forecasts based on a Beveridge–Nelson filter: Is there statistical evidence for a slowdown?," Journal of Macroeconomics, Elsevier, vol. 69(C).
    6. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    7. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    8. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    9. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    10. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    11. Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
    12. Mikihito Nishi, 2024. "Estimating Time-Varying Parameters of Various Smoothness in Linear Models via Kernel Regression," Papers 2406.14046, arXiv.org, revised Jan 2025.
    13. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    16. Andre Jungmittag, 2016. "Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
    17. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    18. Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023. "Forecasting inflation: The use of dynamic factor analysis and nonlinear combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 514-529, April.
    19. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    20. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.

    More about this item

    Keywords

    time series; structural breaks; forecasting; optimal forecast; weighted estimator;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.