IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v173y2025ics0165188925000260.html
   My bibliography  Save this article

An Investigation into the Uncertainty Revision Process of Professional Forecasters

Author

Listed:
  • Clements, Michael P.
  • Rich, Robert W.
  • Tracy, Joseph

Abstract

Following Manzan (2021), this paper examines how professional forecasters revise their fixed-event uncertainty (variance) forecasts and tests the Bayesian learning prediction that variance forecasts should decrease as the horizon shortens. We show that Manzan's (2021) use of first moment “efficiency” tests are not applicable to studying revisions of variance forecasts. Instead, we employ monotonicity tests developed by Patton and Timmermann (2012) in our first known application of these tests to second moments of survey expectations. We find strong evidence that the variance forecasts are consistent with the Bayesian learning prediction of declining monotonicity.

Suggested Citation

  • Clements, Michael P. & Rich, Robert W. & Tracy, Joseph, 2025. "An Investigation into the Uncertainty Revision Process of Professional Forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:dyncon:v:173:y:2025:i:c:s0165188925000260
    DOI: 10.1016/j.jedc.2025.105060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188925000260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2025.105060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Variance forecasts; Survey expectations; Bayesian learning; Monotonicity tests; Inflation forecasts; GDP growth forecasts;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:173:y:2025:i:c:s0165188925000260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.