IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v67y2005is1p957-982.html
   My bibliography  Save this article

Nonlinear Correlograms and Partial Autocorrelograms

Author

Listed:
  • Heather M. Anderson
  • Farshid Vahid

Abstract

This paper proposes neural network‐based measures of predictability in conditional mean, and then uses them to construct nonlinear analogues to autocorrelograms and partial autocorrelograms. In contrast to other measures of nonlinear dependence that rely on nonparametric estimation of densities or multivariate integration, our autocorrelograms are simple to calculate and appear to work well in relatively small samples.

Suggested Citation

  • Heather M. Anderson & Farshid Vahid, 2005. "Nonlinear Correlograms and Partial Autocorrelograms," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 957-982, December.
  • Handle: RePEc:bla:obuest:v:67:y:2005:i:s1:p:957-982
    DOI: 10.1111/j.1468-0084.2005.00147.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0084.2005.00147.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0084.2005.00147.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    3. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    4. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2017. "A diagram to detect serial dependencies: an application to transport time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 581-594, March.
    2. Yoon, Gawon, 2010. "Do real exchange rates really follow threshold autoregressive or exponential smooth transition autoregressive models?," Economic Modelling, Elsevier, vol. 27(2), pages 605-612, March.
    3. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2018. "Testing for Serial Independence: Beyond the Portmanteau Approach," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 219-238, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    2. Dahl, Christian M. & Gonzalez-Rivera, Gloria, 2003. "Testing for neglected nonlinearity in regression models based on the theory of random fields," Journal of Econometrics, Elsevier, vol. 114(1), pages 141-164, May.
    3. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    4. Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
    5. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    6. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    7. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    8. Raimundo Soto, "undated". "Nonlinearities in the Demand for money: A Neural Network Approach," ILADES-UAH Working Papers inv107, Universidad Alberto Hurtado/School of Economics and Business.
    9. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    10. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW Kiel).
    11. Artur Silva Lopes & Gabriel Florin Zsurkis, 2019. "Are linear models really unuseful to describe business cycle data?," Applied Economics, Taylor & Francis Journals, vol. 51(22), pages 2355-2376, May.
    12. Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
    13. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
    14. Valerie Herzberg & George Kapetanios & Simon Price, 2003. "Import prices and exchange rate pass-through: theory and evidence from the United Kingdom," Bank of England working papers 182, Bank of England.
    15. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    16. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 27-45, January.
    17. Manfred M. Fischer & Wolfgang Koller, 2001. "Testing for Non-Linear Dependence in Univariate Time Series: An Empirical Investigation of the Austrian Unemployment Rate," ERSA conference papers ersa01p233, European Regional Science Association.
    18. Andrew P. Blake & George Kapetanios, 2003. "Pure Significance Tests of the Unit Root Hypothesis Against Nonlinear Alternatives," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 253-267, May.
    19. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    20. Corradi, Valentina & Swanson, Norman R. & White, Halbert, 2000. "Testing for stationarity-ergodicity and for comovements between nonlinear discrete time Markov processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 39-73, May.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:67:y:2005:i:s1:p:957-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.