IDEAS home Printed from https://ideas.repec.org/b/ces/ifobei/52.html
   My bibliography  Save this book

Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence

Author

Listed:
  • Christian Seiler

Abstract

Surveys are a widely used tool to answer socio-economic research question across disciplines. However, data collection can face certain problems such as nonresponding units. For household and population surveys, a large body of literature about the effects of nonresponse exist but only less is known in case of business surveys. This thesis deals with the missing values in the Ifo Business Survey which is conducted in similar form in nearly all OECD countries. The most prominent result of this survey is the Ifo Business Climate Index, a business cycle indicator for the German economy. This indicator is highly observed by entrepreneurs, analysts, politicians, journalists, academics and the general public. The results of this thesis show that business cycle indicators based on this type of questioning are very stable towards any kind of non-random missing data processes. This is shown by simulation studies as well as an estimation of the missing values. In particular, the missing values do not lead to a significant reduction in forecasting performance.

Suggested Citation

  • Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
  • Handle: RePEc:ces:ifobei:52
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifo_Beitraege_z_Wifo_52.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
    4. Stangl, Anna, 2009. "Essays on the Measurement of Economic Expectations," Munich Dissertations in Economics 9823, University of Munich, Department of Economics.
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. Seiler, Christian & Heumann, Christian, 2013. "Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey," Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
    7. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    8. Patrick Royston, 2005. "Multiple imputation of missing values: update," Stata Journal, StataCorp LP, vol. 5(2), pages 188-201, June.
    9. Christian Gayer, 2006. "Forecast Evaluation of European Commission Survey Indicators," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(2), pages 157-183.
    10. Patrick Royston, 2005. "Multiple imputation of missing values: Update of ice," Stata Journal, StataCorp LP, vol. 5(4), pages 527-536, December.
    11. Horst Rottmann & Timo Wollmershäuser, 2013. "A micro data approach to the identification of credit crunches," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2423-2441, June.
    12. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    13. Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
    14. Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011. "Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria," Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
    15. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, October.
    16. Christian Seiler, 2010. "Dynamic Modelling of Nonresponse in Business Surveys," ifo Working Paper Series 93, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    17. Schnabel Annette, 1997. "Teilnahmeverhalten bei Unternehmensbefragungen," Arbeit, De Gruyter, vol. 6(2), pages 154-172, June.
    18. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    19. Horton N. J. & Lipsitz S. R., 2001. "Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables," The American Statistician, American Statistical Association, vol. 55, pages 244-254, August.
    20. Adrian Mander, 2003. "WHOTDECK: Stata module to perform multiple imputation using the Approximate Bayesian Bootstrap with weights," Statistical Software Components S433201, Boston College Department of Economics, revised 21 Feb 2011.
    21. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    22. Steffen Henzel & Timo Wollmershäuser, 2006. "Quantifying Inflation Expectations with the Carlson-Parkin Method: A Survey-based Determination of the Just Noticeable Difference," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 321-352.
    23. Christian Seiler, 2015. "On the robustness of balance statistics with respect to nonresponse," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2014(2), pages 45-62.
    24. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    25. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    26. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    27. Daniel Schunk, 2008. "A Markov chain Monte Carlo algorithm for multiple imputation in large surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 101-114, February.
    28. Richard J. Cook & Leilei Zeng & Grace Y. Yi, 2004. "Marginal Analysis of Incomplete Longitudinal Binary Data: A Cautionary Note on LOCF Imputation," Biometrics, The International Biometric Society, vol. 60(3), pages 820-828, September.
    29. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    30. R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013. "Uncertainty and Economic Activity: Evidence from Business Survey Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
    31. Anna Stangl, 2007. "European Data Watch: Ifo World Economic Survey Micro Data," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 127(3), pages 487-496.
    32. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    33. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    34. Klaus Abberger & Manuel Birnbrich & Christian Seiler, 2009. "Der »Test des Tests« im Handel – eine Metaumfrage zum ifo Konjunkturtest," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 34-41, November.
    35. repec:zbw:iwhdps:10-10 is not listed on IDEAS
    36. Michela Nardo, 2003. "The Quantification of Qualitative Survey Data: A Critical Assessment," Journal of Economic Surveys, Wiley Blackwell, vol. 17(5), pages 645-668, December.
    37. Su, Yu-Sung & Gelman, Andrew & Hill, Jennifer & Yajima, Masanao, 2011. "Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i02).
    38. repec:bla:econom:v:42:y:1975:i:166:p:123-38 is not listed on IDEAS
    39. Florian Janik & Susanne Kohaut, 2012. "Why don’t they answer? Unit non-response in the IAB establishment panel," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(3), pages 917-934, April.
    40. Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Weinhardt & Alexia Meyermann & Stefan Liebig & Jürgen Schupp, 2016. "The Linked Employer-Employee Study of the Socio-Economic Panel (SOEP-LEE): Project Report," SOEPpapers on Multidisciplinary Panel Data Research 829, DIW Berlin, The German Socio-Economic Panel (SOEP).
    2. Matthias Bannert & Andreas Dibiasi, 2014. "Unveiling Participant Level Determinants of Unit Non-Response in Business Tendency Surveys," KOF Working papers 14-363, KOF Swiss Economic Institute, ETH Zurich.
    3. Christian Seiler & Klaus Wohlrabe, 2013. "Das ifo Geschäftsklima und die deutsche Konjunktur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(18), pages 17-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Seiler, 2015. "On the robustness of balance statistics with respect to nonresponse," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2014(2), pages 45-62.
    2. Seiler, Christian & Heumann, Christian, 2013. "Microdata imputations and macrodata implications: Evidence from the Ifo Business Survey," Economic Modelling, Elsevier, vol. 35(C), pages 722-733.
    3. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    4. Christian Seiler, 2014. "The determinants of unit non-response in the Ifo Business Survey," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 8(3), pages 161-177, September.
    5. Christian Seiler, 2012. "The Data Sets of the LMU-ifo Economics & Business Data Center – A Guide for Researchers," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 132(4), pages 609-618.
    6. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    7. Sebastian Link, 2018. "Harmonization and Interpretation of the ifo Business Survey's Micro Data," CESifo Working Paper Series 7427, CESifo.
    8. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    9. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(22), pages 27-35, November.
    10. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    11. Anja Hönig, 2010. "Linkage of Ifo Survey and Balance-Sheet Data: The EBDC Business Expectations Panel & the EBDC Business Investment Panel," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 130(4), pages 635-642.
    12. Link Sebastian, 2020. "Harmonization of the ifo Business Survey’s Micro Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(4), pages 543-555, August.
    13. Lukas Buchheim & Sebastian Link, 2017. "The Effect of Disaggregate Information on the Expectation Formation of Firms," CESifo Working Paper Series 6768, CESifo.
    14. repec:jss:jstsof:45:i03 is not listed on IDEAS
    15. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    16. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    17. Robert Lehmann, 2021. "Forecasting exports across Europe: What are the superior survey indicators?," Empirical Economics, Springer, vol. 60(5), pages 2429-2453, May.
    18. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    19. Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(54), pages 5802-5816.
    20. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55.
    21. Christian Seiler, 2014. "Mode Preferences in Business Surveys: Evidence from Germany," ifo Working Paper Series 193, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifobei:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.