IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v47y2022ipas1544612321005572.html
   My bibliography  Save this article

Detecting market pattern changes: A machine learning approach

Author

Listed:
  • Mustafa, Andy Ali
  • Lin, Ching-Yang
  • Kakinaka, Makoto

Abstract

We train an artificial neural network (ANN) model to recognize the pattern of the financial market and use this model to detect whether and when the market pattern has changed. Over 2000–2021, we find that the market has experienced five significant changes. The timings of these changes coincide with critical historical events (e.g. Great Recession and COVID-19) and changes in the monetary policy regime.

Suggested Citation

  • Mustafa, Andy Ali & Lin, Ching-Yang & Kakinaka, Makoto, 2022. "Detecting market pattern changes: A machine learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
  • Handle: RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612321005572
    DOI: 10.1016/j.frl.2021.102621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321005572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.102621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    3. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Roubaud, David & Arouri, Mohamed, 2018. "Oil prices, exchange rates and stock markets under uncertainty and regime-switching," Finance Research Letters, Elsevier, vol. 27(C), pages 28-33.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    8. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    9. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    10. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    11. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    12. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    13. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    2. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    3. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    4. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    5. Ba Chu & Shafiullah Qureshi, 2023. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1567-1609, December.
    6. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    7. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    8. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    9. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    10. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    11. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
    12. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    13. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    14. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    15. Liu, Qingfu & Tao, Zhenyi & Tse, Yiuman & Wang, Chuanjie, 2022. "Stock market prediction with deep learning: The case of China," Finance Research Letters, Elsevier, vol. 46(PA).
    16. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
    17. Goutte, Stéphane & Le, Hoang-Viet & Liu, Fei & von Mettenheim, Hans-Jörg, 2023. "Deep learning and technical analysis in cryptocurrency market," Finance Research Letters, Elsevier, vol. 54(C).
    18. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    19. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    20. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.

    More about this item

    Keywords

    Machine learning application; US economy; Structural change;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612321005572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.