IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i3p878-890.html
   My bibliography  Save this article

Unrestricted and controlled identification of loss functions: Possibility and impossibility results

Author

Listed:
  • Lieli, Robert P.
  • Stinchcombe, Maxwell B.
  • Grolmusz, Viola M.

Abstract

The property that the conditional mean is the unrestricted optimal forecast characterizes the Bregman class of loss functions, while the property that the α-quantile is the unrestricted optimal forecast characterizes the generalized α-piecewise linear (α-GPL) class. However, in settings where the forecaster’s choice of forecasts is limited to the support of the predictive distribution, different Bregman losses lead to different forecasts. This is not true for the α-GPL class: the failure of identification is more fundamental. Motivated by these examples, we state simple conditions that can be used to ascertain whether loss functions that are consistent for the same statistical functional become identifiable when off-support forecasts are disallowed. We also study the identifying power of unrestricted forecasts within the class of smooth, convex loss functions. For any such loss ℓ, the set of losses that are consistent for the same statistical functional as ℓ is a tiny subset of this class in a precise mathematical sense. Finally, we illustrate the identification problem that is posed by the non-uniqueness of consistent losses for the moment-based loss function estimation methods proposed in the literature.

Suggested Citation

  • Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:878-890
    DOI: 10.1016/j.ijforecast.2018.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019300019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granger, Clive W.J. & Machina, Mark J., 2006. "Forecasting and Decision Theory," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 2, pages 81-98, Elsevier.
    2. Lieli, Robert P. & Stinchcombe, Maxwell B., 2013. "On The Recoverability Of Forecasters’ Preferences," Econometric Theory, Cambridge University Press, vol. 29(3), pages 517-544, June.
    3. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    4. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    5. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    6. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    7. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    8. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    9. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    10. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    11. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    12. Anderson Robert M. & Zame William R., 2001. "Genericity with Infinitely Many Parameters," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 1(1), pages 1-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    2. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    3. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    4. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2022. "Characterizing M-estimators," Papers 2208.08108, arXiv.org.
    5. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    8. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    9. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    10. Francis X. Diebold & Minchul Shin, 2017. "Assessing point forecast accuracy by stochastic error distance," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
    11. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    12. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    13. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    14. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    15. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    16. Yen, Yu-Min & Yen, Tso-Jung, 2021. "Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss functions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 733-758.
    17. De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
    18. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    19. Sander Barendse & Andrew J. Patton, 2022. "Comparing Predictive Accuracy in the Presence of a Loss Function Shape Parameter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1057-1069, June.
    20. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:878-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.