Optimal Forecasts in the Presence of Discrete Structural Breaks under Long Memory
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
References listed on IDEAS
- Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018.
"A multivariate test against spurious long memory,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
- Sibbertsen, Philipp & Leschinski, Christian & Holzhausen, Marie, 2015. "A Multivariate Test Against Spurious Long Memory," Hannover Economic Papers (HEP) dp-547, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002.
"Inflation, forecast intervals and long memory regression models,"
International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
- Charles S. Bos & Philip Hans Franses & Marius Ooms, 2001. "Inflation, Forecast Intervals and Long Memory Regression Models," Tinbergen Institute Discussion Papers 01-029/4, Tinbergen Institute.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Hyung, Namwon & Franses, Philip Hans & Penm, Jack, 2006.
"Structural breaks and long memory in US inflation rates: Do they matter for forecasting?,"
Research in International Business and Finance, Elsevier, vol. 20(1), pages 95-110, March.
- Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009.
"Forecasting long memory time series under a break in persistence,"
CREATES Research Papers
2009-53, Department of Economics and Business Economics, Aarhus University.
- Heinen, Florian & Sibbertsen, Philipp & Kruse, Robinson, 2009. "Forecasting long memory time series under a break in persistence," Hannover Economic Papers (HEP) dp-433, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Zhongjun Qu, 2011.
"A Test Against Spurious Long Memory,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
- Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
- Zhongjun Qu, 2010. "A Test Against Spurious Long Memory," Boston University - Department of Economics - Working Papers Series WP2010-051, Boston University - Department of Economics.
- John M. Maheu & Stephen Gordon, 2008.
"Learning, forecasting and structural breaks,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
- John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
- John M Maheu & Stephen Gordon, 2007. "Learning, Forecasting and Structural Breaks," Working Papers tecipa-284, University of Toronto, Department of Economics.
- Maheu, John M. & McCurdy, Thomas H., 2009.
"How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
- John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
- John M. Maheu & Thomas H. McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Paper series 19_07, Rimini Centre for Economic Analysis.
- Raffaella Giacomini & Barbara Rossi, 2009.
"Detecting and Predicting Forecast Breakdowns,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
- Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
- Giacomini, Raffaella & Rossi, Barbara, 2006. "Detecting and predicting forecast breakdowns," Working Paper Series 638, European Central Bank.
- Rossi, Barbara & Giacomini, Raffaella, 2006. "Detecting and Predicting Forecast Breakdowns," Working Papers 06-01, Duke University, Department of Economics.
- Jushan Bai & Pierre Perron, 1998.
"Estimating and Testing Linear Models with Multiple Structural Changes,"
Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006.
"Forecasting Time Series Subject to Multiple Structural Breaks,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
- Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
- Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2004. "‘Forecasting Time Series Subject to Multiple Structural Breaks’," Cambridge Working Papers in Economics 0433, Faculty of Economics, University of Cambridge.
- Pesaran, M. Hashem & Timmermann, Allan & Pettenuzzo, Davide, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CEPR Discussion Papers 4636, C.E.P.R. Discussion Papers.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo.
- Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
- Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
- Pierre Perron & Yohei Yamamoto, 2021.
"Testing for Changes in Forecasting Performance,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 148-165, January.
- Pierre Perron & Yohei Yamamoto, 2018. "Testing for Changes in Forecasting Performance," Boston University - Department of Economics - Working Papers Series WP2019-03, Boston University - Department of Economics, revised Dec 2018.
- PERRON, Pierre & YAMAMOTO, Yohei & 山本, 庸平, 2018. "Testing for Changes in Forecasting Performance," Discussion Papers 2018-03, Graduate School of Economics, Hitotsubashi University.
- Pierre Perron & Yohei Yamamoto, 2018. "Testing for Changes in Forecasting Performance," Boston University - Department of Economics - Working Papers Series WP2019-13, Boston University - Department of Economics, revised Jun 2019.
- Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
- Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
- Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
- Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
- Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
- Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
- Pesaran, M. Hashem & Pick, Andreas, 2011.
"Forecast Combination Across Estimation Windows,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
- M. Hashem Pesaran & Andreas Pick, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 307-318, April.
- Alessandro Casini & Taosong Deng & Pierre Perron, 2021. "Theory of Low Frequency Contamination from Nonstationarity and Misspecification: Consequences for HAR Inference," Papers 2103.01604, arXiv.org, revised Sep 2024.
- Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
- Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
- Atsushi Inoue & Barbara Rossi, 2011. "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1186-1204, November.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jannik Kreye & Philipp Sibbertsen, 2024. "Testing for a Forecast Accuracy Breakdown under Long Memory," Papers 2409.07087, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
- Rinke, Saskia & Busch, Marie & Leschinski, Christian, 2017. "Long Memory, Breaks, and Trends: On the Sources of Persistence in Inflation Rates," Hannover Economic Papers (HEP) dp-584, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013.
"Optimal forecasts in the presence of structural breaks,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
- M Hashem Pesaran & Andreas Pick & Mikhail Pranovich, 2011. "Optimal Forecasts in the Presence of Structural Breaks," DNB Working Papers 327, Netherlands Central Bank, Research Department.
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018.
"A multivariate test against spurious long memory,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
- Sibbertsen, Philipp & Leschinski, Christian & Holzhausen, Marie, 2015. "A Multivariate Test Against Spurious Long Memory," Hannover Economic Papers (HEP) dp-547, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Hännikäinen Jari, 2017.
"Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks,"
Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
- Hännikäinen, Jari, 2015. "Selection of an estimation window in the presence of data revisions and recent structural breaks," MPRA Paper 66759, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Alessandro Casini & Pierre Perron, 2018.
"Structural Breaks in Time Series,"
Boston University - Department of Economics - Working Papers Series
WP2019-02, Boston University - Department of Economics.
- Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Andrés Herrera Aramburú & Gabriel Rodríguez, 2016.
"Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?,"
International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
- Andres Herrera & Gabriel Rodríguez, 2014. "Volatility of Stock Market and Exchange Rate Returns in Peru: Long Memory or Short Memory with Level Shifts?," Documentos de Trabajo / Working Papers 2014-393, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
- Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
- Pesaran, M.H. & Pick, A. & Pranovich, M., 2011. "Optimal Forecasts in the Presence of Structural Breaks (Updated 14 November 2011)," Cambridge Working Papers in Economics 1163, Faculty of Economics, University of Cambridge.
- Jiawen Xu & Pierre Perron, 2015.
"Forecasting in the presence of in and out of sample breaks,"
Boston University - Department of Economics - Working Papers Series
wp2015-012, Boston University - Department of Economics.
- Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
- Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
More about this item
Keywords
Long memory; Forecasting; Structural break; Optimal weight; ARFIMA model;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-01-16 (Econometrics)
- NEP-ETS-2023-01-16 (Econometric Time Series)
- NEP-FOR-2023-01-16 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.