IDEAS home Printed from https://ideas.repec.org/a/eme/afrpps/v71y2011i2p179-200.html
   My bibliography  Save this article

Time‐varying hedge ratios in linked agricultural markets

Author

Listed:
  • Anton Bekkerman

Abstract

Purpose - The purpose of this paper is to examine the potential gains in hedge ratio calculation for agricultural commodities by incorporating market linkages and prices of related commodities into the hedge ratio estimation process. Design/methodology/approach - A vector autoregressive multivariate generalized autoregressive conditional heteroskedasticity (VAR‐MGARCH) model is used to construct a time‐varying correlation matrix for commodity prices across linked markets and across linked commodities. The MGARCH model is estimated using a two‐step approach, which allows for a large system of related prices to be estimated. Findings - In‐sample and out‐of‐sample portfolio variance comparison among no hedge, bivariate GARCH, and MGARCH models indicates that hedge ratios estimated using the MGARCH approach reduce agricultural producers' and commercial consumers' risks in futures market participation. Research limitations/implications - The application is limited to an examination of Montana wheat markets. Practical implications - Agricultural producers who use futures markets to reduce market risk will have a better method for determining hedging positions, because MGARCH estimated hedge ratios incorporate more information than hedge ratios estimated using existing practices. Social implications - Portfolio variance reduction is analogous to utility improvement for agricultural producers. More efficient hedging strategies can lead to better implementation of futures markets and increased social welfare. Originality/value - This research substantially extends current literature on agricultural hedge strategies by illustrating the advantages of using an hedge ratio estimation approach that incorporates important information about prices at linked markets and prices of other commodities. Providing evidence that market portfolio variance can be lowered using the multivariate estimation approach, the research offers commercial agricultural producers and consumers a practical tool for improving futures market strategies.

Suggested Citation

  • Anton Bekkerman, 2011. "Time‐varying hedge ratios in linked agricultural markets," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(2), pages 179-200, August.
  • Handle: RePEc:eme:afrpps:v:71:y:2011:i:2:p:179-200
    DOI: 10.1108/00021461111152564
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/00021461111152564/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/00021461111152564/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/00021461111152564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moschini, GianCarlo & Myers, Robert J., 2002. "Testing for constant hedge ratios in commodity markets: a multivariate GARCH approach," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 589-603, December.
    2. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. John Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
    5. Robert J. Myers & Stanley R. Thompson, 1989. "Generalized Optimal Hedge Ratio Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(4), pages 858-868.
    6. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    7. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    8. Zanotti, Giovanna & Gabbi, Giampaolo & Geranio, Manuela, 2010. "Hedging with futures: Efficacy of GARCH correlation models to European electricity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(2), pages 135-148, April.
    9. Lence, Sergio H., 1995. "On the optimal hedge under unbiased futures prices," Economics Letters, Elsevier, vol. 47(3-4), pages 385-388, March.
    10. Baillie, R.T. & Myers, R.J., 1989. "Modeling Commodity Price Distributions And Estimating The Optimal Futures Hedge," Papers 201, Columbia - Center for Futures Markets.
    11. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    12. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    13. Peter S. Sephton, 1993. "Optimal Hedge Ratios at the Winnipeg Commodity Exchange," Canadian Journal of Economics, Canadian Economics Association, vol. 26(1), pages 175-193, February.
    14. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    15. Anil K. Bera & Philip Garcia & Jae-Sun Roh, 1997. "Estimation of Time-Varying Hedge Ratios for Corn and Soybeans: BGARCH and Random Coefficient Approaches," Finance 9712007, University Library of Munich, Germany.
    16. Seung‐Ryong Yang & B. Wade Brorsen, 1993. "Nonlinear dynamics of daily futures prices: Conditional heteroskedasticity or chaos?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 175-191, April.
    17. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    18. Michael Cooper & Roberto C. Gutierrez, Jr. & Bill Marcum, 2005. "On the Predictability of Stock Returns in Real Time," The Journal of Business, University of Chicago Press, vol. 78(2), pages 469-500, March.
    19. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    20. Berg, Nathan & Gu, Anthony Y. & Lien, Donald, 2007. "Dynamic correlation: A tool hedging house-price risk?," MPRA Paper 26368, University Library of Munich, Germany.
    21. repec:bla:jecsur:v:16:y:2002:i:3:p:357-96 is not listed on IDEAS
    22. Choudhry, Taufiq, 2009. "Short-run deviations and time-varying hedge ratios: Evidence from agricultural futures markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 58-65, March.
    23. Michael S. Haigh & Matthew T. Holt, 2000. "Hedging Multiple Price Uncertainty in International Grain Trade," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 881-896.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Bekkerman, 2021. "Quality forecasts: Predicting when and how much markets value higher‐protein wheat," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(4), pages 465-490, December.
    2. Carlotta Penone & Elisa Giampietri & Samuele Trestini, 2021. "Hedging Effectiveness of Commodity Futures Contracts to Minimize Price Risk: Empirical Evidence from the Italian Field Crop Sector," Risks, MDPI, vol. 9(12), pages 1-14, December.
    3. Jędrzej Białkowski & Martin T. Bohl & Devmali Perera, 2022. "Commodity Futures Hedge Ratios: A Meta-Analysis," Working Papers in Economics 22/12, University of Canterbury, Department of Economics and Finance.
    4. Lu, Xinjie & Su, Yuandong & Huang, Dengshi, 2023. "Chinese agricultural futures volatility: New insights from potential domestic and global predictors," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    2. Michael S. Haigh & Matthew T. Holt, 2002. "Combining time-varying and dynamic multi-period optimal hedging models," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 29(4), pages 471-500, December.
    3. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    4. Jian Yang & Titus Awokuse, 2003. "Asset storability and hedging effectiveness in commodity futures markets," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 487-491.
    5. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    6. Christos Floros & Dimitrios Vougas, 2004. "Hedge ratios in Greek stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(15), pages 1125-1136.
    7. Shawkat M. Hammoudeh & Yuan Yuan & Michael McAleer, 2009. "Exchange Rate and Industrial Commodity Volatility Transmissions and Hedging Strategies," CARF F-Series CARF-F-172, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Choudhry, Taufiq, 2009. "Short-run deviations and time-varying hedge ratios: Evidence from agricultural futures markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 58-65, March.
    9. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    10. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.
    11. Michael S. Haigh & Henry L. Bryant, 2000. "The effect of barge and ocean freight price volatility in international grain markets," Agricultural Economics, International Association of Agricultural Economists, vol. 25(1), pages 41-58, June.
    12. Moschini, GianCarlo & Myers, Robert J., 2002. "Testing for constant hedge ratios in commodity markets: a multivariate GARCH approach," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 589-603, December.
    13. Shawkat M.Hammoudeh & Yuan Yuan & Michael McAleer, 2010. "Exchange Rate and Industrial Commodity Volatility Transmissions, Asymmetries and Hedging Strategies," Working Papers in Economics 10/33, University of Canterbury, Department of Economics and Finance.
    14. Jahangir Sultan & Mohammad Hasan, 2008. "The effectiveness of dynamic hedging: evidence from selected European stock index futures," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 469-488.
    15. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    16. Zouheir Mighri & Majid Ibrahim Alsaggaf, 2019. "Volatility Spillovers among the Cryptocurrency Time Series," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 81-90.
    17. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    18. Haigh, Michael S. & Bryant, Henry L., 2001. "The effect of barge and ocean freight price volatility in international grain markets," Agricultural Economics, Blackwell, vol. 25(1), pages 41-58, June.
    19. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    20. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:afrpps:v:71:y:2011:i:2:p:179-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.