Long-term prediction intervals of economic time series
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-019-01689-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015.
"Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 83, pages 771-811, March.
- Elliott, Graham & Müller, Ulrich K & Watson, Mark W, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," University of California at San Diego, Economics Working Paper Series qt5jp0q0fx, Department of Economics, UC San Diego.
- Kitsul, Yuriy & Wright, Jonathan H., 2013.
"The economics of options-implied inflation probability density functions,"
Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
- Jonathan Wright & Yuriy Kitsul, 2012. "The Economics of Options-Implied Inflation Probability Density Functions," 2012 Meeting Papers 174, Society for Economic Dynamics.
- Yuriy Kitsul & Jonathan H. Wright, 2012. "The Economics of Options-Implied Inflation Probability Density Functions," NBER Working Papers 18195, National Bureau of Economic Research, Inc.
- Yuriy Kitsul & Jonathan H. Wright, 2012. "The Economics of Options-Implied Inflation Probability Density Functions," Economics Working Paper Archive 600, The Johns Hopkins University,Department of Economics.
- Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016.
"Risks for the long run: Estimation with time aggregation,"
Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
- Ravi Bansal & Dana Kiku & Amir Yaron, 2012. "Risks For the Long Run: Estimation with Time Aggregation," NBER Working Papers 18305, National Bureau of Economic Research, Inc.
- Dehling, Herold & Fried, Roland & Sharipov, Olimjon Sh. & Vogel, Daniel & Wornowizki, Max, 2013. "Estimation of the variance of partial sums of dependent processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 141-147.
- Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
- Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
- Christoffersen, Peter F & Diebold, Francis X, 1998.
"Cointegration and Long-Horizon Forecasting,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "Cointegration and Long-Horizon Forecasting," NBER Technical Working Papers 0217, National Bureau of Economic Research, Inc.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "Cointegration and long-horizon forecasting," Working Papers 97-14, Federal Reserve Bank of Philadelphia.
- Mr. Francis X. Diebold & Mr. Peter F. Christoffersen, 1997. "Cointegration and Long-Horizon Forecasting," IMF Working Papers 1997/061, International Monetary Fund.
- Ľuboš Pástor & Robert F. Stambaugh, 2012.
"Are Stocks Really Less Volatile in the Long Run?,"
Journal of Finance, American Finance Association, vol. 67(2), pages 431-478, April.
- Stambaugh, Robert F. & Pástor, Luboš, 2009. "Are Stocks Really Less Volatile in the Long Run?," CEPR Discussion Papers 7199, C.E.P.R. Discussion Papers.
- Lubos Pastor & Robert F. Stambaugh, 2009. "Are Stocks Really Less Volatile in the Long Run?," NBER Working Papers 14757, National Bureau of Economic Research, Inc.
- Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
- Diebold, Francis X. & Lindner, Peter, 1996. "Fractional integration and interval prediction," Economics Letters, Elsevier, vol. 50(3), pages 305-313, March.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Jörg Breitung & Malte Knüppel, 2021.
"How far can we forecast? Statistical tests of the predictive content,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(4), pages 369-392, June.
- Breitung, Jörg & Knüppel, Malte, 2018. "How far can we forecast? Statistical tests of the predictive content," Discussion Papers 07/2018, Deutsche Bundesbank.
- James H. Stock & Mark W. Watson, 2005.
"Understanding Changes In International Business Cycle Dynamics,"
Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
- James H. Stock & Mark W. Watson, 2003. "Understanding Changes in International Business Cycle Dynamics," NBER Working Papers 9859, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004.
"Bootstrap predictive inference for ARIMA processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
- Pascual, Lorenzo, 1999. "Bootstrap Predictive Inference for Arima Processes," DES - Working Papers. Statistics and Econometrics. WS 6283, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Goncalves, Silvia & de Jong, Robert, 2003. "Consistency of the stationary bootstrap under weak moment conditions," Economics Letters, Elsevier, vol. 81(2), pages 273-278, November.
- Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016.
"The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers 06/14, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016.
"Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2013. "Shrinkage estimation of high-dimensional factor models with structural instabilities," Working Papers 14-4, Federal Reserve Bank of Philadelphia.
- Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2014. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," NBER Working Papers 19792, National Bureau of Economic Research, Inc.
- Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
- Ulrich K. Müller & Mark W. Watson, 2016.
"Measuring Uncertainty about Long-Run Predictions,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1711-1740.
- Ulrich Mueller & Mark W. Watson, 2013. "Measuring Uncertainty about Long-Run Prediction," NBER Working Papers 18870, National Bureau of Economic Research, Inc.
- Diebold, Francis X. & Rudebusch, Glenn D., 1989.
"Long memory and persistence in aggregate output,"
Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
- Francis X. Diebold & Glenn D. Rudebusch, 1988. "Long memory and persistence in aggregate output," Finance and Economics Discussion Series 7, Board of Governors of the Federal Reserve System (U.S.).
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kejin Wu & Sayar Karmakar, 2023. "A model-free approach to do long-term volatility forecasting and its variants," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
- David Gabauer & Rangan Gupta & Sayar Karmakar & Joshua Nielsen, 2022. "Stock Market Bubbles and the Forecastability of Gold Returns (and Volatility)," Working Papers 202228, University of Pretoria, Department of Economics.
- Demirel, Ufuk Devrim & Otterson, James, 2023. "Quantifying the uncertainty of long-term macroeconomic projections," Journal of Macroeconomics, Elsevier, vol. 75(C).
- Kejin Wu & Sayar Karmakar, 2021. "Model-Free Time-Aggregated Predictions for Econometric Datasets," Forecasting, MDPI, vol. 3(4), pages 1-14, December.
- Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
- Kejin Wu & Sayar Karmakar & Rangan Gupta, 2023.
"GARCHX-NoVaS: A Model-free Approach to Incorporate Exogenous Variables,"
Papers
2308.13346, arXiv.org, revised Sep 2024.
- Kejin Wu & Sayar Karmakar & Rangan Gupta, 2024. "GARCHX-NoVaS: A Model-Free Approach to Incorporate Exogenous Variables," Working Papers 202425, University of Pretoria, Department of Economics.
- Kejin Wu & Sayar Karmakar & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Stock Market Volatility Over a Century in an Emerging Market Economy: The Case of South Africa," Working Papers 202326, University of Pretoria, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Sayar Karmakar & Marek Chudý & Wei Biao Wu, 2022. "Long‐term prediction intervals with many covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 587-609, July.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021.
"Bagging weak predictors,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
- Manuel Lukas & Eric Hillebrand, 2014. "Bagging Weak Predictors," CREATES Research Papers 2014-01, Department of Economics and Business Economics, Aarhus University.
- Eric Hillebrand & Manuel Lukas & Wei Wei, 2020. "Bagging Weak Predictors," Monash Econometrics and Business Statistics Working Papers 16/20, Monash University, Department of Econometrics and Business Statistics.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Constandina Koki & Loukia Meligkotsidou & Ioannis Vrontos, 2020. "Forecasting under model uncertainty: Non‐homogeneous hidden Markov models with Pòlya‐Gamma data augmentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 580-598, July.
- Andersen, Torben G. & Varneskov, Rasmus T., 2022.
"Testing for parameter instability and structural change in persistent predictive regressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
- Charles, Amelie & Darne, Olivier & Kim, Jae, 2016.
"Stock Return Predictability: Evaluation based on Prediction Intervals,"
MPRA Paper
70143, University Library of Munich, Germany.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2016. "Stock Return Predictability: Evaluation based on prediction intervals," Working Papers hal-01295037, HAL.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005.
"Bootstrap prediction intervals for power-transformed time series,"
International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
- Pascual, Lorenzo, 2001. "Bootstrap prediction intervals for power-transformed time series," DES - Working Papers. Statistics and Econometrics. WS ws010503, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Dalibor Stevanovic & Rachidi Kotchoni & Maxime Leroux, 2017.
"Forecasting economic activity in data-rich environment,"
CIRANO Working Papers
2017s-05, CIRANO.
- Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," EconomiX Working Papers 2017-5, University of Paris Nanterre, EconomiX.
- Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," Working Papers hal-04141668, HAL.
More about this item
Keywords
Heavy-tailed noise; Long memory; Kernel quantile estimator; Stationary bootstrap; Bayes;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:1:d:10.1007_s00181-019-01689-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.