A general procedure to combine estimators
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.08.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
- Torres, Santiago, 2023. "The Oracle Local Polynomial Estimator," Documentos CEDE 20937, Universidad de los Andes, Facultad de Economía, CEDE.
- Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2019. "Robust optimization of forecast combinations," International Journal of Forecasting, Elsevier, vol. 35(3), pages 910-926.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Wei Zhao & Limin Peng & John Hanfelt, 2022. "Semiparametric latent class analysis of recurrent event data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1175-1197, September.
- Chernova, O. & Lavancier, F. & Rochet, P., 2020. "Averaging of density kernel estimators," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
- Christophe Ange Napoléon Biscio & Frédéric Lavancier, 2017. "Contrast Estimation for Parametric Stationary Determinantal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 204-229, March.
- Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
- Tu, Yundong & Yi, Yanping, 2017. "Forecasting cointegrated nonstationary time series with time-varying variance," Journal of Econometrics, Elsevier, vol. 196(1), pages 83-98.
- Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
- Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023.
"LASSO principal component averaging: A fully automated approach for point forecast pooling,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
- Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
- Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
- Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010.
"Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. van Dijk & Marno Verbeek, 2009. "Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights," Tinbergen Institute Discussion Papers 09-061/4, Tinbergen Institute.
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. van Dijk & Marno Verbeek, 2009. "Forecast accuracy and economic gains from Bayesian model averaging using time varying weight," Working Paper 2009/10, Norges Bank.
- Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Fernando M. Duarte & Carlo Rosa, 2015.
"The equity risk premium: a review of models,"
Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
- Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Staff Reports 714, Federal Reserve Bank of New York.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
- Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017.
"Forecast Combinations in a DSGE‐VAR Lab,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
- Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
More about this item
Keywords
Averaging; Parametric estimation; Weibull model; Boolean model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:175-192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.