IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v23y2013i2p105-117.html
   My bibliography  Save this article

Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets

Author

Listed:
  • Qing Xu
  • Terry Childs

Abstract

In this research, we compare the one-step-ahead out-of-sample forecast performances of the linear Quantile Autoregression (QAR) model as well as the latest sophisticated nonlinear copula-based QAR models for four daily equity index returns during the current financial tumultuous period. In addition, two Conditional Autoregressive Value-at-Risk (CAViaR) models proposed by Engle and Manganelli (2004) are also considered. In order to obtain the robust evaluation results, we estimate the time-varying parameters via two forecasting schemes (recursive and rolling) and examine the accuracy of the Value-at-Risk (VaR) forecast by three different test procedures. Our main findings are that the CAViaR models provide good forecast performance in most cases and they are superior to both linear and nonlinear copula-based QAR models.

Suggested Citation

  • Qing Xu & Terry Childs, 2013. "Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 23(2), pages 105-117, January.
  • Handle: RePEc:taf:apfiec:v:23:y:2013:i:2:p:105-117
    DOI: 10.1080/09603107.2012.709601
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09603107.2012.709601
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2012.709601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    2. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    3. Perez-Quiros, Gabriel & Timmermann, Allan, 2001. "Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 259-306, July.
    4. Huang, Dashan & Yu, Baimin & Fabozzi, Frank J. & Fukushima, Masao, 2009. "CAViaR-based forecast for oil price risk," Energy Economics, Elsevier, vol. 31(4), pages 511-518, July.
    5. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    7. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    8. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    9. Bartram, Söhnke M. & Bodnar, Gordon M., 2009. "No place to hide: The global crisis in equity markets in 2008/2009," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1246-1292, December.
    10. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    11. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    12. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    13. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    16. Lima, Luiz Renato & Gaglianone, Wagner Piazza & Sampaio, Raquel M.B., 2008. "Debt ceiling and fiscal sustainability in Brazil: A quantile autoregression approach," Journal of Development Economics, Elsevier, vol. 86(2), pages 313-335, June.
    17. Bartram, Söhnke M. & Bodnar, Gordon M., 2009. "No Place To Hide: The Global Crisis in Equity Markets in 2008/09," MPRA Paper 15955, University Library of Munich, Germany.
    18. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Wei, 2023. "The impact of oil and natural gas prices on overnight risk in exchange rates based on the MVMQ-CAViaR models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 616-625.
    2. Gębka, Bartosz & Wohar, Mark E., 2013. "The determinants of quantile autocorrelations: Evidence from the UK," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 51-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    3. Esparcia, Carlos & Díaz, Antonio, 2024. "The football world upside down: Traditional equities as an alternative for the new fan tokens? A portfolio optimization study," Research in International Business and Finance, Elsevier, vol. 71(C).
    4. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    5. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    6. Bertrand Candelon & Marc Joëts & Sessi Tokpavi, 2012. "Testing for crude oil markets globalization during extreme price movements," EconomiX Working Papers 2012-28, University of Paris Nanterre, EconomiX.
    7. Hashmi, Aamir R. & Tay, Anthony S., 2007. "Global regional sources of risk in equity markets: Evidence from factor models with time-varying conditional skewness," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 430-453, April.
    8. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    9. Shum, Wai Yan, 2020. "Modelling conditional skewness: Heterogeneous beliefs, short sale restrictions and market declines," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    11. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Candelon, Bertrand & Joëts, Marc & Tokpavi, Sessi, 2013. "Testing for Granger causality in distribution tails: An application to oil markets integration," Economic Modelling, Elsevier, vol. 31(C), pages 276-285.
    13. Qing Xu & Xiao-Ming Li, 2009. "Estimation of dynamic asymmetric tail dependences: an empirical study on Asian developed futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 19(4), pages 273-290.
    14. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    15. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    16. repec:wyi:journl:002098 is not listed on IDEAS
    17. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    18. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    19. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    20. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    21. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:23:y:2013:i:2:p:105-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.