IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v31y2007i5p1351-1373.html
   My bibliography  Save this article

Technical analysis compared to mathematical models based methods under parameters mis-specification

Author

Listed:
  • Blanchet-Scalliet, Christophette
  • Diop, Awa
  • Gibson, Rajna
  • Talay, Denis
  • Tanre, Etienne

Abstract

No abstract is available for this item.

Suggested Citation

  • Blanchet-Scalliet, Christophette & Diop, Awa & Gibson, Rajna & Talay, Denis & Tanre, Etienne, 2007. "Technical analysis compared to mathematical models based methods under parameters mis-specification," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1351-1373, May.
  • Handle: RePEc:eee:jbfina:v:31:y:2007:i:5:p:1351-1373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(06)00295-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karatzas Ioannis, 2003. "A note on Bayesian detection of change-points with an expected miss criterion," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 3-14, January.
    2. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    3. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
    2. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2016. "Robustness of mathematical models and technical analysis strategies," Papers 1605.00173, arXiv.org.
    3. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Vicky Henderson & Saul Jacka & Ruiqi Liu, 2021. "The Support and Resistance Line Method: An Analysis via Optimal Stopping," Papers 2103.02331, arXiv.org.
    5. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    6. Jerome L. Stein, 2009. "Application of Stochastic Optimal Control to Financial Market Debt Crises," CESifo Working Paper Series 2539, CESifo.
    7. Shiryaev Albert & Novikov Alexander A., 2009. "On a stochastic version of the trading rule “Buy and Hold”," Statistics & Risk Modeling, De Gruyter, vol. 26(4), pages 289-302, July.
    8. Jun Maeda & Saul D. Jacka, 2017. "An Optimal Stopping Problem Modeling Technical Analysis," Papers 1707.05253, arXiv.org, revised Mar 2020.
    9. Stein, Jerome L., 2010. "A tale of two debt crises: a stochastic optimal control analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-24.
    10. Savas Dayanik & Semih O Sezer, 2023. "Model Misspecification in Discrete Time Bayesian Online Change Detection," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-27, March.
    11. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bin & Huang, Fuzhe & Li, Kai, 2022. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    2. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    3. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    4. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    5. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857, April.
    6. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    7. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    8. Jin, Xiaoye, 2022. "Testing technical trading strategies on China's equity ETFs: A skewness perspective," Emerging Markets Review, Elsevier, vol. 51(PA).
    9. Jin, Xiaoye, 2021. "What do we know about the popularity of technical analysis in foreign exchange markets? A skewness preference perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    10. Jimmy Hilliard & Adam Schwartz & James Squire, 2013. "A Test of Technical Analysis: Matching Time Displaced Generalized Patterns," Financial Management, Financial Management Association International, vol. 42(2), pages 291-314, June.
    11. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
    12. Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.
    13. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    14. Jukka Ilomaki & Hannu Laurila & Michael McAleer, 2018. "Simple Market Timing with Moving Averages," Tinbergen Institute Discussion Papers 18-048/III, Tinbergen Institute.
    15. Eero P䴤ri & Mika Vilska, 2014. "Performance of moving average trading strategies over varying stock market conditions: the Finnish evidence," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2851-2872, August.
    16. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    17. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    18. Li-Xin Wang, 2014. "Dynamical Models of Stock Prices Based on Technical Trading Rules Part I: The Models," Papers 1401.1888, arXiv.org, revised Feb 2016.
    19. Alexeev, Vitali & Tapon, Francis, 2011. "Testing weak form efficiency on the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 661-691, September.
    20. Stephan Schulmeister, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:31:y:2007:i:5:p:1351-1373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.