IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0195.html
   My bibliography  Save this paper

Modeling Turning Points In Global Equity Market

Author

Listed:
  • Daniel Felix Ahelegbey

    (University of Pavia)

  • Monica Billio

    (University of Venice)

  • Roberto Casarin

    (University of Venice)

Abstract

Turning points in financial markets are often characterized by changes in the direction and/or magnitude of market movements with short-to-long term impacts on investors’ decisions. This paper develops a Bayesian technique to turning point detection in financial equity markets. We derive the interconnectedness among stock market returns from a piece-wise network vector autoregressive model. The empirical application examines turning points in global equity market over the past two decades. We also compare the Covid-19 induced interconnectedness with that of the global financial crisis in 2008 to identify similarities and the most central market for spillover propagation

Suggested Citation

  • Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2020. "Modeling Turning Points In Global Equity Market," DEM Working Papers Series 195, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0195
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0195.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Western, Bruce & Kleykamp, Meredith, 2004. "A Bayesian Change Point Model for Historical Time Series Analysis," Political Analysis, Cambridge University Press, vol. 12(4), pages 354-374.
    3. Daniel Covitz & Nellie Liang & Gustavo A. Suarez, 2013. "The Evolution of a Financial Crisis: Collapse of the Asset-Backed Commercial Paper Market," Journal of Finance, American Finance Association, vol. 68(3), pages 815-848, June.
    4. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    5. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    6. Skripnikov, A. & Michailidis, G., 2019. "Joint estimation of multiple network Granger causal models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 120-133.
    7. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    8. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    9. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    10. Jukka Corander & Mattias Villani, 2006. "A Bayesian Approach to Modelling Graphical Vector Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 141-156, January.
    11. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    12. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    13. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    14. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    15. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    16. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    17. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    18. Bhaskar DasGupta & Lakshmi Kaligounder, 2012. "On Global Stability of Financial Networks," Papers 1208.3789, arXiv.org, revised Aug 2014.
    19. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    20. Bianchi, Daniele & Billio, Monica & Casarin, Roberto & Guidolin, Massimo, 2019. "Modeling systemic risk with Markov Switching Graphical SUR models," Journal of Econometrics, Elsevier, vol. 210(1), pages 58-74.
    21. Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
    22. Daniel Felix Ahelegbey & Paolo Giudici, 2014. "Hierarchical Graphical Models, With Application To Systemic Risk," DEM Working Papers Series 063, University of Pavia, Department of Economics and Management.
    23. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    24. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    25. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    26. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    27. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    28. Marco Grzegorczyk & Dirk Husmeier & Jörg Rahnenführer, 2011. "Modelling non-stationary dynamic gene regulatory processes with the BGM model," Computational Statistics, Springer, vol. 26(2), pages 199-218, June.
    29. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    30. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    31. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    32. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    33. Roberto Casarin & Matteo Iacopini & German Molina & Enrique ter Horst & Ramon Espinasa & Carlos Sucre & Roberto Rigobon, 2020. "Multilayer network analysis of oil linkages," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 269-296.
    34. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    2. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".
    3. Billio, Monica & Casarin, Roberto & Costola, Michele & Iacopini, Matteo, 2024. "COVID-19 spreading in financial networks: A semiparametric matrix regression model," Econometrics and Statistics, Elsevier, vol. 29(C), pages 113-131.
    4. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    5. Daniel Felix Ahelegbey & Paolo Giudici, 2020. "Market Risk, Connectedness and Turbulence: A Comparison of 21st Century Financial Crises," DEM Working Papers Series 188, University of Pavia, Department of Economics and Management.
    6. Daniel Felix Ahelegbey, 2022. "Statistical Modelling of Downside Risk Spillovers," FinTech, MDPI, vol. 1(2), pages 1-10, April.
    7. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    8. Paolo Giudici & Laura Parisi, 2016. "Bail in or Bail out? The Atlante example from a systemic risk perspective," DEM Working Papers Series 124, University of Pavia, Department of Economics and Management.
    9. Paolo Giudici & Laura Parisi, 2015. "Modeling Systemic Risk with Correlated Stochastic Processes," DEM Working Papers Series 110, University of Pavia, Department of Economics and Management.
    10. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    11. Paolo Giudici & Laura Parisi, 2016. "CoRisk: measuring systemic risk through default probability contagion," DEM Working Papers Series 116, University of Pavia, Department of Economics and Management.
    12. Ahelegbey, Daniel Felix & Giudici, Paolo, 2022. "NetVIX — A network volatility index of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    13. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Interconnected networks: Measuring extreme risk connectedness between China’s financial sector and real estate sector," International Review of Financial Analysis, Elsevier, vol. 90(C).
    14. Paolo Giudici & Peter Sarlin & Alessandro Spelta, 2016. "The multivariate nature of systemic risk: direct and common exposures," DEM Working Papers Series 118, University of Pavia, Department of Economics and Management.
    15. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
    16. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    17. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    18. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    19. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    20. Monica Billio & Roberto Casarin & Matteo Iacopini, 2024. "Bayesian Markov-Switching Tensor Regression for Time-Varying Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 109-121, January.

    More about this item

    Keywords

    Bayesian inference; Dynamic Programming; Turning points; Networks; VAR.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.