Machine learning and oil price point and density forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2021.105494
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Palm, F. & Zellner, A., 1991.
"To combine or not to combine? issues of combining forecasts,"
LIDAM Discussion Papers CORE
1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- PALM, Franz C. & ZELLNER, Arnold, 1992. "To Combine or not to Combine? Issues of Combining Forecasts," LIDAM Reprints CORE 1027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Hilde C. Bjørnland & Vegard H. Larsen & Junior Maih, 2018.
"Oil and Macroeconomic (In)stability,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 10(4), pages 128-151, October.
- Hilde C. Bjørnland & Vegard H. Larsen, 2015. "Oil and macroeconomic (in)stability," Working Papers No 7/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjørnland & Vegard H. Larsen & Junior Maih, 2017. "Oil and macroeconomic (in)stability," CAMA Working Papers 2017-79, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hilde C. Bjørnland & Vegard H. Larsen & Junior Maih, 2016. "Oil and macroeconomic (in)stability," Working Paper 2016/12, Norges Bank.
- Hilde C. Bjørnland & Vegard H ghaug Larsen & Junior Maih, 2017. "Oil and macroeconomic (in)stability," Working Papers No 6/2017, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006.
"A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
- Stock, James & Watson, Mark & Marcellino, Massimiliano, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Christiane Baumeister & Lutz Kilian, 2016.
"Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us,"
Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
- Baumeister, Christiane & Kilian, Lutz, 2015. "Forty years of oil price fluctuations: Why the price of oil may still surprise us," CFS Working Paper Series 525, Center for Financial Studies (CFS).
- Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," CESifo Working Paper Series 5709, CESifo.
- Kilian, Lutz & Baumeister, Christiane, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," CEPR Discussion Papers 11035, C.E.P.R. Discussion Papers.
- Hilde C. Bjørnland & Julia Zhulanova, 2018.
"The Shale Oil Boom and the U.S. Economy: Spillovers and Time-Varying Effects,"
Working Papers
No 8/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjørnland & Julia Zhulanova, 2019. "The shale oil boom and the U.S. economy: Spillovers and time-varying effects," Working Paper 2019/14, Norges Bank.
- Hilde C. Bjørnland & Julia Zhulanova, 2019. "The shale oil boom and the US economy: Spillovers and time-varying effects," CAMA Working Papers 2019-59, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gogolin, Fabian & Kearney, Fearghal & Lucey, Brian M. & Peat, Maurice & Vigne, Samuel A., 2018.
"Uncovering long term relationships between oil prices and the economy: A time-varying cointegration analysis,"
Energy Economics, Elsevier, vol. 76(C), pages 584-593.
- Gogolin, Fabian & Kearney, Fearghal & Lucey, Brian M. & Peat, Maurice & Vigne, Samuel, 2018. "Uncovering Long Term Relationships between Oil Prices and the Economy: A Time-Varying Cointegration Analysis," QBS Working Paper Series 2018/04, Queen's University Belfast, Queen's Business School.
- Dario Caldara & Matteo Iacoviello, 2022.
"Measuring Geopolitical Risk,"
American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
- Dario Caldara & Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," International Finance Discussion Papers 1222r1, Board of Governors of the Federal Reserve System (U.S.), revised 23 Mar 2022.
- Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Mohaddes, Kamiar & Pesaran, M. Hashem, 2017.
"Oil prices and the global economy: Is it different this time around?,"
Energy Economics, Elsevier, vol. 65(C), pages 315-325.
- Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil prices and the global economy: is it different this time around?," Globalization Institute Working Papers 277, Federal Reserve Bank of Dallas.
- Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil Prices and the Global Economy: Is It Different This Time Around?," Working Papers 1052, Economic Research Forum, revised 10 2016.
- Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil Prices and the Global Economy: Is it Different this Time Around?," CESifo Working Paper Series 5992, CESifo.
- Mr. Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil Prices and the Global Economy: Is It Different This Time Around?," IMF Working Papers 2016/210, International Monetary Fund.
- Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil prices and the global economy: Is it different this time around?," CAMA Working Papers 2016-56, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Kamiar Mohaddes & M. Hashem Pesaran, 2016. "Oil Prices and the Global Economy: Is It Different This Time Around?," Cambridge Working Papers in Economics 1640, Faculty of Economics, University of Cambridge.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," ifo Working Paper Series 39, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Hamilton, James D., 2003.
"What is an oil shock?,"
Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
- James D. Hamilton, 2000. "What is an Oil Shock?," NBER Working Papers 7755, National Bureau of Economic Research, Inc.
- Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015.
"What Drives Oil Prices? Emerging Versus Developed Economies,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
- Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2012. "What drives oil prices? Emerging versus developed economies," Working Papers No 2/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Knut Are Aastveit & Hilde C. Bjornland, 2013. "What drives oil prices? Emerging versus developed economies," CAMA Working Papers 2013-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2012. "What drives oil prices? Emerging versus developed economies," Working Paper 2012/11, Norges Bank.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Luiz Renato Lima & Fanning Meng, 2017. "Out‐of‐Sample Return Predictability: A Quantile Combination Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 877-895, June.
- Miller, J. Isaac & Ni, Shawn, 2011.
"Long-Term Oil Price Forecasts: A New Perspective On Oil And The Macroeconomy,"
Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 396-415, November.
- J. Isaac Miller & Shawn Ni, 2010. "Long-Term Oil Price Forecasts: A New Perspective on Oil and the Macroeconomy," Working Papers 1012, Department of Economics, University of Missouri.
- Zagaglia, Paolo, 2010.
"Macroeconomic factors and oil futures prices: A data-rich model,"
Energy Economics, Elsevier, vol. 32(2), pages 409-417, March.
- Zagaglia, Paolo, 2009. "Macroeconomic Factors and Oil Futures Prices: A Data-Rich Model," Research Papers in Economics 2009:7, Stockholm University, Department of Economics.
- Peter C. B. Phillips & Hyungsik R. Moon, 1999.
"Linear Regression Limit Theory for Nonstationary Panel Data,"
Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
- Peter C.B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Cowles Foundation Discussion Papers 1222, Cowles Foundation for Research in Economics, Yale University.
- Lutz Kilian & Robert J. Vigfusson, 2013.
"Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
- Lutz Kilian & Robert J. Vigfusson, 2012. "Do oil prices help forecast U.S. real GDP? the role of nonlinearities and asymmetries," International Finance Discussion Papers 1050, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Vigfusson, Robert J., 2012. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," CEPR Discussion Papers 8980, C.E.P.R. Discussion Papers.
- Todd E. Clark, 2011.
"Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
- Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
- Mattias Villani & Malin Adolfson & Jesper Linde, 2005.
"Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model,"
Money Macro and Finance (MMF) Research Group Conference 2005
32, Money Macro and Finance Research Group.
- Adolfson, Malin & Lindé, Jesper & Villani, Mattias, 2005. "Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model," Working Paper Series 190, Sveriges Riksbank (Central Bank of Sweden), revised 01 Jun 2006.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Lutz Kilian & Robert J. Vigfusson, 2017.
"The Role of Oil Price Shocks in Causing U.S. Recessions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
- Lutz Kilian & Robert J. Vigfusson, 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," International Finance Discussion Papers 1114, Board of Governors of the Federal Reserve System (U.S.).
- Lutz Kilian & Robert J. Vigfusson, 2016. "The Role of Oil Price Shocks in Causing U.S. Recessions," CESifo Working Paper Series 5743, CESifo.
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The role of oil price shocks in causing U.S. recessions," CFS Working Paper Series 460, Center for Financial Studies (CFS).
- Kilian, Lutz & Vigfusson, Robert J., 2014. "The Role of Oil Price Shocks in Causing U.S. Recessions," CEPR Discussion Papers 10040, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Robert B. Barsky & Lutz Kilian, 2002.
"Do We Really Know That Oil Caused the Great Stagflation? A Monetary Alternative,"
NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 137-198,
National Bureau of Economic Research, Inc.
- Robert B. Barsky & Lutz Kilian, 2001. "Do We Really Know that Oil Caused the Great Stagflation? A Monetary Alternative," NBER Working Papers 8389, National Bureau of Economic Research, Inc.
- Miller, J. Isaac & Ratti, Ronald A., 2009.
"Crude oil and stock markets: Stability, instability, and bubbles,"
Energy Economics, Elsevier, vol. 31(4), pages 559-568, July.
- J. Isaac Miller & Ronald Ratti, 2008. "Crude Oil and Stock Markets: Stability, Instability, and Bubbles," Working Papers 0810, Department of Economics, University of Missouri, revised 20 Jan 2009.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Medeiros, Marcelo C & Vasconcelos, Gabriel & Freitas, Eduardo, 2016. "Forecasting Brazilian Inflation with High-Dimensional Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(2), November.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Lutz Kilian & Daniel P. Murphy, 2014.
"The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
- Kilian, Lutz & Murphy, Daniel, 2010. "The Role of Inventories and Speculative Trading in the Global Market for Crude Oil," CEPR Discussion Papers 7753, C.E.P.R. Discussion Papers.
- Wagner Piazza Gaglianone & João Victor Issler, 2014.
"Microfounded Forecasting,"
Working Papers Series
372, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Gaglianone, Wagner Piazza & Issler, João Victor, 2015. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 766, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Gargano, Antonio & Timmermann, Allan, 2014. "Forecasting commodity price indexes using macroeconomic and financial predictors," International Journal of Forecasting, Elsevier, vol. 30(3), pages 825-843.
- Cologni, Alessandro & Manera, Matteo, 2008.
"Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries,"
Energy Economics, Elsevier, vol. 30(3), pages 856-888, May.
- Matteo Manera & Alessandro Cologni, 2005. "Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries," Working Papers 2005.101, Fondazione Eni Enrico Mattei.
- Cologni, Alessandro & Manera, Matteo, 2005. "Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries," International Energy Markets Working Papers 12110, Fondazione Eni Enrico Mattei (FEEM).
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Hong, Harrison & Yogo, Motohiro, 2012.
"What does futures market interest tell us about the macroeconomy and asset prices?,"
Journal of Financial Economics, Elsevier, vol. 105(3), pages 473-490.
- Harrison Hong & Motohiro Yogo, 2011. "What Does Futures Market Interest Tell Us about the Macroeconomy and Asset Prices?," NBER Working Papers 16712, National Bureau of Economic Research, Inc.
- Issler, João Victor & Lima, Luiz Renato, 2009.
"A panel data approach to economic forecasting: The bias-corrected average forecast,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2008. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 668, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Lima, Luiz Renato Regis de Oliveira, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 642, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021.
"Commodity prices and global economic activity: A derived-demand approach,"
Energy Economics, Elsevier, vol. 96(C).
- Angelo Mont’Alverne Duarte & Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & João Victor Issler, 2020. "Commodity Prices and Global Economic Activity: a derived-demand approach," Working Papers Series 539, Central Bank of Brazil, Research Department.
- Bekiros, Stelios D. & Diks, Cees G.H., 2008.
"The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality,"
Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
- Bekiros, S. & Diks, C.G.H., 2007. "The Relationship between Crude Oil Spot and Futures Prices: Cointegration, Linear and Nonlinear Causality," CeNDEF Working Papers 07-11, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Morales-Arias, Leonardo & Moura, Guilherme V., 2013.
"Adaptive forecasting of exchange rates with panel data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
- Leonardo Morales-Arias & Alexander Dross, 2010. "Adaptive Forecasting of Exchange Rates with Panel Data," Research Paper Series 285, Quantitative Finance Research Centre, University of Technology, Sydney.
- Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
- Aaron Smalter Hall, 2018. "Machine Learning Approaches to Macroeconomic Forecasting," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 63-81.
- David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 293-318.
- Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
- Hamilton, James D & Herrera, Ana Maria, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 265-286, April.
- Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
- Cortazar, Gonzalo & Kovacevic, Ivo & Schwartz, Eduardo S., 2015. "Expected commodity returns and pricing models," Energy Economics, Elsevier, vol. 49(C), pages 60-71.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Gonzalo Cortazar & Lorenzo Naranjo, 2006. "An N‐factor Gaussian model of oil futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 243-268, March.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Maslyuk, Svetlana & Smyth, Russell, 2009. "Cointegration between oil spot and future prices of the same and different grades in the presence of structural change," Energy Policy, Elsevier, vol. 37(5), pages 1687-1693, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner Piazza Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Artur Brasil Fialho Rodrigues, 2023. "Predicting Recessions in (almost) Real Time in a Big-data Setting," Working Papers Series 587, Central Bank of Brazil, Research Department.
- Abdou, Hussein A. & Elamer, Ahmed A. & Abedin, Mohammad Zoynul & Ibrahim, Bassam A., 2024. "The impact of oil and global markets on Saudi stock market predictability: A machine learning approach," Energy Economics, Elsevier, vol. 132(C).
- Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
- Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
- Claudia ANTAL-VAIDA, 2021. "Basic Hyperparameters Tuning Methods for Classification Algorithms," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 25(2), pages 64-74.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Duras, Toni & Javed, Farrukh & Månsson, Kristofer & Sjölander, Pär & Söderberg, Magnus, 2023. "Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data," Energy Economics, Elsevier, vol. 120(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021.
"Commodity prices and global economic activity: A derived-demand approach,"
Energy Economics, Elsevier, vol. 96(C).
- Angelo Mont’Alverne Duarte & Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & João Victor Issler, 2020. "Commodity Prices and Global Economic Activity: a derived-demand approach," Working Papers Series 539, Central Bank of Brazil, Research Department.
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014.
"Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons,"
Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 735, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 744, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Wagner Piazza Gaglianone & João Victor Issler, 2014.
"Microfounded Forecasting,"
Working Papers Series
372, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Gaglianone, Wagner Piazza & Issler, João Victor, 2015. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 766, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
- Issler, João Victor & Lima, Luiz Renato, 2009.
"A panel data approach to economic forecasting: The bias-corrected average forecast,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2008. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 668, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Lima, Luiz Renato Regis de Oliveira, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 642, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Haase, Felix & Neuenkirch, Matthias, 2023.
"Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
- Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Working Paper Series 2020-03, University of Trier, Research Group Quantitative Finance and Risk Analysis.
- Felix Haase & Matthias Neuenkirch, 2021. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," CESifo Working Paper Series 8828, CESifo.
- Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- repec:fgv:epgewp:736 is not listed on IDEAS
- Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
More about this item
Keywords
Machine learning; Commodity prices; Forecasting;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003807. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.