IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20180047.html
   My bibliography  Save this paper

Asymmetric Risk Impacts of Chinese Tourists to Taiwan

Author

Listed:
  • Chia-Lin Chang

    (National Chung Hsing University, Taiwan)

  • Shu-Han Hsu

    (National Chung Hsing University, Taiwan)

  • Michael McAleer

    (Asia University, Taiwan)

Abstract

Since 2008, when Taiwan’s President Ma Ying-Jeou relaxed the Cross-Strait policy, China has become Taiwan’s largest source of international tourism. In order to understand the risk persistence of Chinese tourists, the paper investigates the short-run and long-run persistence of shocks to the change rate of Chinese tourists to Taiwan. The daily data used for the empirical analysis is from 1 January 2013 to 28 February 2018. McAleer’s (2015) fundamental equation in tourism finance is used to link the change rate of tourist arrivals and the change in tourist revenues. Three widely-used univariate conditional volatility models, namely GARCH(1,1), GJR(1,1) and EGARCH(1,1), are used to measure the short-run and long-run persistence of shocks, as well as symmetric, asymmetric and leverage effects. Three different Heterogeneous AutoRegressive (HAR) models, HAR(1), HAR(1,7) HAR(1,7,28), are considered as alternative mean equations for capturing a variety of long memory effects. The mean equations associated with GARCH(1,1), GJR(1,1) and EGARCH(1,1) are used to analyse the risk persistence of the change in Chinese tourists. The exponential smoothing process is used to adjust the seasonality around the trend in Chinese tourists. The empirical results show asymmetric impacts of positive and negative shocks on the volatility of the change in the number of Group-type and Medical-type tourists, while Individual-type tourists display a symmetric volatility pattern. Somewhat unusually, leverage effects are observed in EGARCH for Medical-type tourists, which shows a negative correlation between shocks in tourist numbers and the subsequent shocks to volatility. For both Group-type and Medical-type tourists, the asymmetric impacts on volatility show that negative shocks have larger effects than do positive shocks. The leverage effect in EGARCH for Medical-type tourists implies that larger shocks would decrease volatility in the change in the numbers of Medical-type tourists. These results suggest that Taiwan tourism authorities should act to prevent the negative shocks for the Group-type and Medical-type Chinese tourists to dampen the shocks that arise from having fewer Chinese tourists to Taiwan.

Suggested Citation

  • Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Asymmetric Risk Impacts of Chinese Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-047/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20180047
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/18047.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chia-Lin Chang & Michael McAleer & Christine Lim, 2010. "Modelling the Volatility in Short and Long Haul Japanese Tourist Arrivals to New Zealand and Taiwan," Working Papers in Economics 10/40, University of Canterbury, Department of Economics and Finance.
    2. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    3. Chia-Lin Chang & Michael Mcaleer, 2012. "Aggregation, Heterogeneous Autoregression And Volatility Of Daily International Tourist Arrivals And Exchange Rates," The Japanese Economic Review, Japanese Economic Association, vol. 63(3), pages 397-419, September.
    4. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    5. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    6. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    7. Chia-Lin Chang & Michael Mcaleer, 2009. "Daily Tourist Arrivals, Exchange Rates and Voatility for Korea and Taiwan," Korean Economic Review, Korean Economic Association, vol. 25, pages 241-267.
    8. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    9. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    10. Itzhak Ben-David & John R. Graham, 2013. "Managerial Miscalibration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(4), pages 1547-1584.
    11. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    12. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    13. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    14. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    15. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    16. Divino, Jose Angelo & McAleer, Michael, 2010. "Modelling and forecasting daily international mass tourism to Peru," Tourism Management, Elsevier, vol. 31(6), pages 846-854.
    17. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time‐series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
    18. Kent Daniel & Sheridan Titman, 2006. "Market Reactions to Tangible and Intangible Information," Journal of Finance, American Finance Association, vol. 61(4), pages 1605-1643, August.
    19. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    22. Michael McAleer, 2015. "The Fundamental Equation in Tourism Finance," JRFM, MDPI, vol. 8(4), pages 1-6, December.
    23. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    24. Chang, Chia-Lin & McAleer, Michael, 2017. "The correct regularity condition and interpretation of asymmetry in EGARCH," Economics Letters, Elsevier, vol. 161(C), pages 52-55.
    25. repec:pri:cepsud:91malkiel is not listed on IDEAS
    26. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    27. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    28. Michael McAleer, 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometrics, MDPI, vol. 2(3), pages 1-6, September.
    29. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    30. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    31. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    32. Chia-Lin Chang & Michael McAleer & Dan Slottje, 2009. "Modelling International Tourist Arrivals and Volatility: An Application to Taiwan," Documentos de Trabajo del ICAE 2009-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    33. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    35. LeRoy, Stephen F, 1973. "Risk Aversion and the Martingale Property of Stock Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 436-446, June.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    37. Muñoz, Fernando & Vicente, Ruth, 2018. "Hindsight effect: What are the actual cash flow timing skills of mutual fund investors?," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 181-193.
    38. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    39. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    40. Friesen, Geoffrey C. & Sapp, Travis R.A., 2007. "Mutual fund flows and investor returns: An empirical examination of fund investor timing ability," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2796-2816, September.
    41. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    42. Fama, Eugene F, 1972. "Components of Investment Performance," Journal of Finance, American Finance Association, vol. 27(3), pages 551-567, June.
    43. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    44. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    45. Kim, Abby Y. & Tse, Yiuman & Wald, John K., 2016. "Time series momentum and volatility scaling," Journal of Financial Markets, Elsevier, vol. 30(C), pages 103-124.
    46. Eugene F. Fama, 2014. "Two Pillars of Asset Pricing," American Economic Review, American Economic Association, vol. 104(6), pages 1467-1485, June.
    47. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    48. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Market Timing with Moving Averages," Sustainability, MDPI, vol. 10(7), pages 1-25, June.
    2. Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Simple Market Timing with Moving Averages," Econometric Institute Research Papers EI2018-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    4. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, April.
    5. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Moving Average Market Timing in European Energy Markets: Production Versus Emissions," Energies, MDPI, vol. 11(12), pages 1-24, November.
    6. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    7. Chia-Lin Chang & Michael Mcaleer, 2012. "Aggregation, Heterogeneous Autoregression And Volatility Of Daily International Tourist Arrivals And Exchange Rates," The Japanese Economic Review, Japanese Economic Association, vol. 63(3), pages 397-419, September.
    8. Jukka Ilomäki, 2018. "Risk and return of a trend-chasing application in financial markets: an empirical test," Risk Management, Palgrave Macmillan, vol. 20(3), pages 258-272, August.
    9. Paskalis Glabadanidis, 2014. "The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 161-202, June.
    10. Chia-Lin Chang & Michael Mcaleer, 2009. "Daily Tourist Arrivals, Exchange Rates and Voatility for Korea and Taiwan," Korean Economic Review, Korean Economic Association, vol. 25, pages 241-267.
    11. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    12. Paskalis Glabadanidis, 2015. "Market Timing With Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 387-425, September.
    13. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    14. Achim BACKHAUS & Aliya ZHAKANOVA ISIKSAL, 2016. "The Impact of Momentum Factors on Multi Asset Portfolio," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 146-169, December.
    15. González-Sánchez, Mariano, 2022. "Factorial asset pricing models using statistical anomalies," Research in International Business and Finance, Elsevier, vol. 60(C).
    16. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    17. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    18. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    19. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    20. Siddique, Maryam, 2023. "Does the Adaptive Market Hypothesis Exist in Equity Market? Evidence from Pakistan Stock Exchange," OSF Preprints 9b5dx, Center for Open Science.

    More about this item

    Keywords

    Asymmetric risk; leverage; risk persistence; tourist revenues; conditional volatility models; Heterogeneous AutoRegressive (HAR) models;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Z32 - Other Special Topics - - Tourism Economics - - - Tourism and Development
    • Z33 - Other Special Topics - - Tourism Economics - - - Marketing and Finance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20180047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.