IDEAS home Printed from https://ideas.repec.org/a/ipn/esecon/vviiy2012i34p81-124.html
   My bibliography  Save this article

Capacidad de predicción de los modelos GARCH simétricos aplicados a variables financieras de México 2001-2011

Author

Listed:
  • Villalba-Padilla, Fátima Irina

    (Instituto Politécnico Nacional Fecha de recepción: noviembre 2011 - fecha de aceptación: febrero 2012)

  • Flores-Ortega, Miguel

    (Instituto Politécnico Nacional)

Abstract

Este documento presenta los resultados de la evaluación de la capacidad de pronóstico de los modelos garch simétricos aplicados al ipc, el embi, la tasa de fondeo gubernamental, el tipo de cambio fix y la mezcla mexicana de petróleo, como elementos característicos del comportamiento del mercado financiero mexicano y como variables fundamentales para la toma de decisiones de inversión. Se analizan las aportaciones relevantes que incorporan la volatilidad y sus efectos en los procesos de pronóstico que se agrupan en los modelos garch simétricos y se extiende su aplicación a las variables mencionadas./ This document presents the results of the evaluation of the forecast capacity of the symmetric garch models of the following financial variables: ipc, embi, interest rate, exchange rate and Mexican oil mix, as core elements of the economical behavior and basic foundations with regard to investment decisions. This document includes an analysis of the volatility and its effects in forecast processes related to garch models and its application is extended to the above mentioned financial variables.

Suggested Citation

  • Villalba-Padilla, Fátima Irina & Flores-Ortega, Miguel, 2012. "Capacidad de predicción de los modelos GARCH simétricos aplicados a variables financieras de México 2001-2011," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(34), pages 81-124, segundo t.
  • Handle: RePEc:ipn:esecon:v:vii:y:2012:i:34:p:81-124
    as

    Download full text from publisher

    File URL: http://yuss.me/revistas/ese/ese2012v07n34a03p081_124.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M Hashem & Timmermann, Allan, 2000. "A Recursive Modelling Approach to Predicting UK Stock Returns," Economic Journal, Royal Economic Society, vol. 110(460), pages 159-191, January.
    2. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CARF F-Series CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Geske, Robert & Roll, Richard, 1983. "The Fiscal and Monetary Linkage between Stock Returns and Inflation," Journal of Finance, American Finance Association, vol. 38(1), pages 1-33, March.
    4. G. Andrew Karolyi, 1992. "Predicting Risk: Some New Generalizations," Management Science, INFORMS, vol. 38(1), pages 57-74, January.
    5. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    6. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    7. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    8. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    9. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    10. Michael McAleer & Marcelo C. Medeiros, 2011. "Forecasting Realized Volatility With Linear And Nonlinear Univariate Models," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 6-18, February.
    11. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Jebari, Ouael & Hakmaoui, Abdelati, 2018. "GARCH Family Models vs EWMA: Which is the Best Model to Forecast Volatility of the Moroccan Stock Exchange Market? || Modelos de la familia GARCH vs EWMA: ¿cuál es el mejor modelo para pronosticar la ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 237-249, Diciembre.
    2. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    3. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
    5. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    6. Subrata ROY, 2021. "Volatility Forecasting, Market Efficiency and Effect of Recession of SRI Indices," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(627), S), pages 259-284, Summer.
    7. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    8. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    9. Sergey S. Stepanov, 2009. "Resilience of Volatility," Papers 0911.5048, arXiv.org.
    10. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    11. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    12. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    13. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    14. Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2010. "Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 331-350.
    15. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2019. "Forecasting the KOSPI200 spot volatility using various volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 156-166.
    16. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    17. Noureddine Benlagha & Wael Hemrit, 2018. "The Dynamic and Dependence of Takaful and Conventional Stock Return Behaviours: Evidence from the Insurance Industry in Saudi Arabia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(4), pages 285-323, December.
    18. Ekaterini Tsouma, 2007. "Stock return dynamics and stock market interdependencies," Applied Financial Economics, Taylor & Francis Journals, vol. 17(10), pages 805-825.
    19. Ana Filipa Carvalho & Jose Sa da Costa & Jose Assis Lopes, 2006. "A systematic modelling strategy for futures markets volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 819-833.
    20. Su, Jung-Bin, 2015. "Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market," Economic Modelling, Elsevier, vol. 46(C), pages 204-224.

    More about this item

    Keywords

    GARCH; pronósticos; variables financieras; volatilidad./ GARCH; forecasting; financial variables; volatility.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipn:esecon:v:vii:y:2012:i:34:p:81-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Marroquín-Arreola (email available below). General contact details of provider: https://edirc.repec.org/data/eeipnmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.