IDEAS home Printed from https://ideas.repec.org/p/hep/macppr/200905.html
   My bibliography  Save this paper

Evaluating German Business Cycle Forecasts Under an Asymmetric Loss Function

Author

Listed:
  • Joerg Doepke

    (University of Applied Sciences Merseburg)

  • Ulrich Fritsche

    (Department for Socioeconomics, Department for Economics, University of Hamburg)

  • Boriss Siliverstovs

    (KOF Swiss Economic Institute, ETH Zurich)

Abstract

Based on annual data for growth and inflation forecasts for Germany covering the time span from 1970 to 2007 and up to 17 different forecasts per year, we test for a possible asymmetry of the forecasters' loss function and estimate the degree of asymmetry for each forecasting institution using the approach of Elliot et al. (2005). Furthermore, we test for the rationality of the forecasts under the assumption of a possibly asymmetric loss function and for the features of an optimal forecast under the assumption of a generalized loss function. We find only limited evidence for the existence of an asymmetric loss functions of German forecasters. As regards the rationality of the forecasts the results depend on the underlying assumption of the test. The rationality of inflation forecasts is more doubtful than those of growth forecasts.

Suggested Citation

  • Joerg Doepke & Ulrich Fritsche & Boriss Siliverstovs, 2009. "Evaluating German Business Cycle Forecasts Under an Asymmetric Loss Function," Macroeconomics and Finance Series 200905, University of Hamburg, Department of Socioeconomics.
  • Handle: RePEc:hep:macppr:200905
    as

    Download full text from publisher

    File URL: https://www.wiso.uni-hamburg.de/repec/hepdoc/macppr_5_2009.pdf
    File Function: First version, 2009
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    2. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    3. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    4. Michael Artis & Massimiliano Marcellino, 2001. "Fiscal forecasting: The track record of the IMF, OECD and EC," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 20-36.
    5. Ager, P. & Kappler, M. & Osterloh, S., 2009. "The accuracy and efficiency of the Consensus Forecasts: A further application and extension of the pooled approach," International Journal of Forecasting, Elsevier, vol. 25(1), pages 167-181.
    6. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    7. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 293-318.
    8. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    9. Batchelor, Roy & Peel, David A., 1998. "Rationality testing under asymmetric loss," Economics Letters, Elsevier, vol. 61(1), pages 49-54, October.
    10. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    11. Hansen, Bruce E & West, Kenneth D, 2002. "Generalized Method of Moments and Macroeconomics," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 460-469, October.
    12. G. A. Christodoulakis & E. C. Mamatzakis, 2009. "Assessing the prudence of economic forecasts in the EU," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 583-606.
    13. George A. Christodoulakis & Emmanuel C. Mamatzakis, 2008. "An assessment of the EU growth forecasts under asymmetric preferences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 483-492.
    14. Alan S. Blinder, 1999. "Central Banking in Theory and Practice," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262522608, December.
    15. Dovern, Jonas & Weisser, Johannes, 2008. "Are they really rational? Assessing professional macro-economic forecasts from the G7-countries," Kiel Working Papers 1447, Kiel Institute for the World Economy (IfW Kiel).
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. The loss aversion of economic forecasters
      by Economic Logician in Economic Logic on 2009-12-01 19:59:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia M. Buch & Oliver Holtemöller, 2014. "Do we need new modelling approaches in macroeconomics?," Chapters, in: Ewald Nowotny & Doris Ritzberger-Grünwald & Peter Backé (ed.), Financial Cycles and the Real Economy, chapter 3, pages 36-58, Edward Elgar Publishing.
    2. Gogolev, Stepan & Ozhegov, Evgeniy, 2023. "Asymmetric loss function in product-level sales forecasting: An empirical comparison," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 109-121.
    3. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
    4. Döpke, Jörg & Fritsche, Ulrich & Waldhof, Gaby, 2017. "Theories, techniques and the formation of German business cycle forecasts. Evidence from a survey among professional forecasters," Working Papers 2, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    5. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2013. "Oil price forecasting under asymmetric loss," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2371-2379, June.
    6. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    7. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    8. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
    9. Hans Christian Müller-Dröge & Tara M. Sinclair & H.O. Stekler, 2014. "Evaluating Forecasts of a Vector of Variables: a German Forecasting Competition," CAMA Working Papers 2014-55, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    11. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    12. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    13. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "On the loss function of the Bank of Canada: A note," Economics Letters, Elsevier, vol. 115(2), pages 155-159.
    14. Heilemann Ullrich & Stekler Herman O., 2013. "Has The Accuracy of Macroeconomic Forecasts for Germany Improved?," German Economic Review, De Gruyter, vol. 14(2), pages 235-253, May.
    15. Heilemann Ullrich & Schnorr-Bäcker Susanne, 2017. "Could the start of the German recession 2008–2009 have been foreseen? Evidence from Real-Time Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 237(1), pages 29-62, February.
    16. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    17. Rülke Jan-Christoph, 2012. "Do Private Sector Forecasters Desire to Deviate From the German Council of Economic Experts?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 414-428, August.
    18. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    19. Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
    20. Jan-Christoph Rülke, 2011. "Do private sector forecasters desire to deviate from the German council of economic experts?," WHU Working Paper Series - Economics Group 11-04, WHU - Otto Beisheim School of Management.
    21. Jan-Christoph Rülke & Maria Silgoner & Julia Wörz, 2012. "Herding Behavior of Business Cycle Forecasters in Times of Economic Crises," WHU Working Paper Series - Economics Group 12-03, WHU - Otto Beisheim School of Management.
    22. Krüger, Jens J. & Hoss, Julian, 2012. "German business cycle forecasts, asymmetric loss and financial variables," Economics Letters, Elsevier, vol. 114(3), pages 284-287.
    23. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
    24. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
    25. Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
    2. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    3. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    4. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    5. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    6. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    7. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    8. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    9. Rülke, Jan-Christoph & Pierdzioch, Christian, 2014. "Government Forecasts of Budget Balances Under Asymmetric Loss: International Evidence," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100317, Verein für Socialpolitik / German Economic Association.
    10. Higgins, Matthew L. & Mishra, Sagarika, 2014. "State dependent asymmetric loss and the consensus forecast of real U.S. GDP growth," Economic Modelling, Elsevier, vol. 38(C), pages 627-632.
    11. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    12. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    13. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    14. Yoichi Tsuchiya, 2024. "Conservatism and information rigidity of the European Bank for Reconstruction and Development's growth forecast: Quarter‐century assessment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1399-1421, August.
    15. Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.
    16. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
    17. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    18. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    19. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    20. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    More about this item

    Keywords

    Business cycle forecast evaluation; asymmetric loss function; and rational expectations;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hep:macppr:200905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ulrich Fritsche (email available below). General contact details of provider: https://edirc.repec.org/data/dwuhhde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.