IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27yi2p197-207.html
   My bibliography  Save this article

Quantiles as optimal point forecasts

Author

Listed:
  • Gneiting, Tilmann

Abstract

Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal point forecast. Quantiles arise as optimal point forecasts under a general class of economically relevant loss functions, which nests the asymmetric piecewise linear loss, and which we refer to as generalized piecewise linear (GPL). The level of the quantile depends on a generic asymmetry parameter which reflects the possibly distinct costs of underprediction and overprediction. Conversely, a loss function for which quantiles are optimal point forecasts is necessarily GPL. We review characterizations of this type in the work of Thomson, Saerens and Komunjer, and relate to proper scoring rules, incentive-compatible compensation schemes and quantile regression. In the empirical part of the paper, the relevance of decision theoretic guidance in the transition from a predictive distribution to a point forecast is illustrated using the Bank of England's density forecasts of United Kingdom inflation rates, and probabilistic predictions of wind energy resources in the Pacific Northwest.

Suggested Citation

  • Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
  • Handle: RePEc:eee:intfor:v:27:y::i:2:p:197-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(10)00006-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. Thomson, William, 1979. "Eliciting production possibilities from a well-informed manager," Journal of Economic Theory, Elsevier, vol. 20(3), pages 360-380, June.
    3. Reichelstein, Stefan & Osband, Kent, 1984. "Incentives in government contracts," Journal of Public Economics, Elsevier, vol. 24(2), pages 257-270, July.
    4. Kenneth C. Lichtendahl, Jr. & Robert L. Winkler, 2007. "Probability Elicitation, Scoring Rules, and Competition Among Forecasters," Management Science, INFORMS, vol. 53(11), pages 1745-1755, November.
    5. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    6. Theo Offerman & Joep Sonnemans & Gijs Van De Kuilen & Peter P. Wakker, 2009. "A Truth Serum for Non-Bayesians: Correcting Proper Scoring Rules for Risk Attitudes ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(4), pages 1461-1489.
    7. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    8. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    9. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    10. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    11. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    12. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    13. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.
    14. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    15. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    16. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    17. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    18. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    19. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    20. Maurice E. Schweitzer & Gérard P. Cachon, 2000. "Decision Bias in the Newsvendor Problem with a Known Demand Distribution: Experimental Evidence," Management Science, INFORMS, vol. 46(3), pages 404-420, March.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    23. Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
    24. Louis Eeckhoudt & Christian Gollier & Harris Schlesinger, 1995. "The Risk-Averse (and Prudent) Newsboy," Management Science, INFORMS, vol. 41(5), pages 786-794, May.
    25. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    26. Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
    27. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    28. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    29. Basu, Sudipta & Markov, Stanimir, 2004. "Loss function assumptions in rational expectations tests on financial analysts' earnings forecasts," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 171-203, December.
    30. Muller, Alfred & Scarsini, Marco & Shaked, Moshe, 2002. "The Newsvendor Game Has a Nonempty Core," Games and Economic Behavior, Elsevier, vol. 38(1), pages 118-126, January.
    31. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    32. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    33. Victor Richmond R. Jose & Robert L. Winkler, 2009. "Evaluating Quantile Assessments," Operations Research, INFORMS, vol. 57(5), pages 1287-1297, October.
    34. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    4. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
    5. Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose & Robert L. Winkler, 2017. "Quantile Evaluation, Sensitivity to Bracketing, and Sharing Business Payoffs," Operations Research, INFORMS, vol. 65(3), pages 712-728, June.
    6. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    7. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    8. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    9. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    12. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    13. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    14. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    15. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    16. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    17. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    18. D. J. Johnstone & S. Jones & V. R. R. Jose & M. Peat, 2013. "Measures of the economic value of probabilities of bankruptcy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 635-653, June.
    19. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    20. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:197-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.