IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v316y2022i2d10.1007_s10479-022-04709-0.html
   My bibliography  Save this article

Risk factor extraction with quantile regression method

Author

Listed:
  • Wan-Ni Lai

    (Université Côte d’Azur)

  • Claire Y. T. Chen

    (Montpellier Business School)

  • Edward W. Sun

    (KEDGE Business School)

Abstract

Firm characteristics based risk factors constitute a large part of the asset pricing literature. These characteristic based factors are constructed using the extreme quantiles of the sorted portfolios based on the firm characteristic in question. Yet to date, there is no consensus on a systematic approach to determine the optimal quantile used for extracting firm characteristic based risk factors. In addition, it is a stylised fact that asset prices exhibit heteroscedastic behavior, and counting on the extreme portfolios to extract the characteristic factors can produce unexpected result. In this study, we use quantile regressions to determine the optimal quantiles used in portfolios sorts to extract characteristic based risk factors used in asset pricing. Quantile regressions are well-suited to identify the quantiles needed to extract firm characteristic based factors, especially when the firm characteristic based factors and stock returns relationship is non-linear. More over, quantile regressions presents the quantile-by-quantile risk-return coefficients, thereby verifying the behavior of the extreme quantiles used in the factor construction. By examining the relationship between common characteristic based factors and stock returns in 23 developed countries, we observed that the optimal quantiles used to construct the common factors may differ between factors, but is similar across the North American, Asia-Pacific and Europe regions.

Suggested Citation

  • Wan-Ni Lai & Claire Y. T. Chen & Edward W. Sun, 2022. "Risk factor extraction with quantile regression method," Annals of Operations Research, Springer, vol. 316(2), pages 1543-1572, September.
  • Handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-022-04709-0
    DOI: 10.1007/s10479-022-04709-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04709-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04709-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Zhijie & Koenker, Roger, 2009. "Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1696-1712.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    4. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    5. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    6. Edward W. Sun & Yu-Jen Wang & Min-Teh Yu, 2018. "Integrated Portfolio Risk Measure: Estimation and Asymptotics of Multivariate Geometric Quantiles," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 627-652, August.
    7. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    8. Reinganum, Marc R., 1981. "Misspecification of capital asset pricing : Empirical anomalies based on earnings' yields and market values," Journal of Financial Economics, Elsevier, vol. 9(1), pages 19-46, March.
    9. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    10. Patton, Andrew J. & Timmermann, Allan, 2010. "Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts," Journal of Financial Economics, Elsevier, vol. 98(3), pages 605-625, December.
    11. Yi-Ting Chen & Edward W. Sun & Min-Teh Yu, 2018. "Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 653-684, August.
    12. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    13. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    14. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Robert Novy-Marx, 2014. "Understanding Defensive Equity," NBER Working Papers 20591, National Bureau of Economic Research, Inc.
    17. Martijn Cremers & Michael Halling & David Weinbaum, 2015. "Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns," Journal of Finance, American Finance Association, vol. 70(2), pages 577-614, April.
    18. Joseph P. Romano & Michael Wolf, 2011. "Testing for monotonicity in expected asset returns," ECON - Working Papers 017, Department of Economics - University of Zurich, revised Jan 2013.
    19. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    20. Basu, Sanjoy, 1983. "The relationship between earnings' yield, market value and return for NYSE common stocks : Further evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 129-156, June.
    21. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    22. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    23. Amit Goyal & Narasimhan Jegadeesh, 2018. "Cross-Sectional and Time-Series Tests of Return Predictability: What Is the Difference?," The Review of Financial Studies, Society for Financial Studies, vol. 31(5), pages 1784-1824.
    24. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    25. Lingjie Ma & Larry Pohlman, 2008. "Return forecasts and optimal portfolio construction: a quantile regression approach," The European Journal of Finance, Taylor & Francis Journals, vol. 14(5), pages 409-425.
    26. Hirshleifer, David & Hsu, Po-Hsuan & Li, Dongmei, 2013. "Innovative efficiency and stock returns," Journal of Financial Economics, Elsevier, vol. 107(3), pages 632-654.
    27. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    28. Romano, Joseph P. & Wolf, Michael, 2013. "Testing for monotonicity in expected asset returns," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 93-116.
    29. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    30. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    31. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adhikari, Niroj & Bhandari, Ramesh & Joshi, Prajwol, 2024. "Thermal analysis of lithium-ion battery of electric vehicle using different cooling medium," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    2. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    3. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    4. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    5. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    6. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    7. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    8. Rocciolo, Francesco & Gheno, Andrea & Brooks, Chris, 2022. "Explaining abnormal returns in stock markets: An alpha-neutral version of the CAPM," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Tariq Aziz & Valeed Ahmad Ansari, 2017. "Idiosyncratic volatility and stock returns: Indian evidence," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1420998-142, January.
    10. Michael Hasler & Charles Martineau, 2023. "Explaining the Failure of the Unconditional CAPM with the Conditional CAPM," Management Science, INFORMS, vol. 69(3), pages 1835-1855, March.
    11. Massimo Guidolin & Manuela Pedio & Dimos Andronoudis, 2019. "How Smart is the Real Estate Smart Beta? Evidence from Optimal Style Factor Strategies for REITs," BAFFI CAREFIN Working Papers 19117, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    12. Zaremba, Adam & Szyszka, Adam & Karathanasopoulos, Andreas & Mikutowski, Mateusz, 2021. "Herding for profits: Market breadth and the cross-section of global equity returns," Economic Modelling, Elsevier, vol. 97(C), pages 348-364.
    13. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint Extreme events in equity returns and liquidity and their cross-sectional pricing implications," Journal of Banking & Finance, Elsevier, vol. 115(C).
    14. Adam Zaremba, 2019. "The Cross Section of Country Equity Returns: A Review of Empirical Literature," JRFM, MDPI, vol. 12(4), pages 1-26, October.
    15. Şahin, Baki Cem & Danışoğlu, Seza, 2022. "Ambiguity and asset pricing: An empirical investigation for an emerging market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    16. Zaremba, Adam & Cakici, Nusret & Bianchi, Robert J. & Long, Huaigang, 2023. "Interest rate changes and the cross-section of global equity returns," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    17. Mateus, Irina B. & Mateus, Cesario & Todorovic, Natasa, 2019. "Review of new trends in the literature on factor models and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 344-354.
    18. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2020. "Beta uncertainty," Journal of Banking & Finance, Elsevier, vol. 116(C).
    19. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    20. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-022-04709-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.