Assessing Point Forecast Accuracy by Stochastic Error Distance
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Francis X. Diebold & Minchul Shin, 2017. "Assessing point forecast accuracy by stochastic error distance," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
- Francis X. Diebold & Minchul Shin, 2016. "Assessing Point Forecast Accuracy by Stochastic Error Distance," NBER Working Papers 22516, National Bureau of Economic Research, Inc.
References listed on IDEAS
- Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
- Christoffersen, Peter F. & Diebold, Francis X., 1997.
"Optimal Prediction Under Asymmetric Loss,"
Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
- Peter F. Christoffersen & Francis X. Diebold, "undated". "Optimal Prediction Under Asymmetric Loss," CARESS Working Papres 97-20, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "Optimal prediction under asymmetric loss," Working Papers 97-11, Federal Reserve Bank of Philadelphia.
- Peter F. Christoffersen & Francis X. Diebold, 1994. "Optimal Prediction Under Asymmetric Loss," NBER Technical Working Papers 0167, National Bureau of Economic Research, Inc.
- Christoffersen & Diebold, "undated". "Optimal Prediction Under Asymmetric Loss," Home Pages 167, 1996., University of Pennsylvania.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, September.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, January.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
- Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
- Lee, Tae-Hwy & Tu, Yundong & Ullah, Aman, 2014.
"Nonparametric and semiparametric regressions subject to monotonicity constraints: Estimation and forecasting,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 196-210.
- Tae-Hwy Lee & Yundong Tu & Aman Ullah, 2014. "Nonparametric and Semiparametric Regressions Subject to Monotonicity Constraints: Estimation and Forecasting," Working Papers 201404, University of California at Riverside, Department of Economics.
- Xiaohong Chen & Norman R. Swanson (ed.), 2013. "Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis," Springer Books, Springer, edition 127, number 978-1-4614-1653-1, December.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017.
"Robust Forecast Comparison,"
Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
- Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
- Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017.
"Robust Forecast Comparison,"
Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
- Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
- Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023.
"On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2022. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," NBER Working Papers 29635, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone In?ation and Real Interest Rates," PIER Working Paper Archive 21-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Diebold, Francis X. & Shin, Minchul, 2015. "Assessing point forecast accuracy by stochastic loss distance," Economics Letters, Elsevier, vol. 130(C), pages 37-38.
- Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
- Tomás Marinozzi, 2023. "Forecasting Inflation in Argentina: A Probabilistic Approach," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 81-110, May.
- Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
- Hiroyuki Kawakatsu, 2020. "Recovering Yield Curves from Dynamic Term Structure Models with Time-Varying Factors," Stats, MDPI, vol. 3(3), pages 1-46, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:pen:papers:14-011 is not listed on IDEAS
- Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
- Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Emilio Zanetti Chini, 2018.
"Forecasters’ utility and forecast coherence,"
CREATES Research Papers
2018-23, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
- Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020.
"Proper scoring rules for evaluating asymmetry in density forecasting,"
Papers
2006.11265, arXiv.org, revised Sep 2020.
- Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
- Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015.
"Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
- Ulrich Fritsche & Christian Pierdzioch & Jan-Christoph Ruelke & Georg Stadtmann, 2012. "Forecasting the Brazilian Real and the Mexican Peso: Asymmetric Loss, Forecast Rationality, and Forecaster Herding," Macroeconomics and Finance Series 201202, University of Hamburg, Department of Socioeconomics.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
- Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
- repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
- Sgouropoulos, Nikolaos & Yao, Qiwei & Yastremiz, Claudia, 2015. "Matching a distribution by matching quantiles estimation," LSE Research Online Documents on Economics 57221, London School of Economics and Political Science, LSE Library.
- Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
More about this item
Keywords
Forecast accuracy; forecast evaluation; absolute-error loss; quadratic loss; squared-error loss;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2014-12-08 (Econometrics)
- NEP-ETS-2014-12-08 (Econometric Time Series)
- NEP-FOR-2014-12-08 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:14-038. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.