Seize the Last Day: Period-End-Point Sampling for Forecasts of Temporally Aggregated Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- Anderson, Soren T. & Kellogg, Ryan & Sallee, James M., 2013.
"What do consumers believe about future gasoline prices?,"
Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 383-403.
- Soren T. Anderson & Ryan Kellogg & James M. Sallee, 2011. "What Do Consumers Believe About Future Gasoline Prices?," NBER Working Papers 16974, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017.
"Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2015. "Inside the crystal ball: New approaches to predicting the gasoline price at the pump," CFS Working Paper Series 500, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2015. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CEPR Discussion Papers 10362, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2016. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CESifo Working Paper Series 5759, CESifo.
- Christiane Baumeister & Lutz Kilian, 2014.
"What Central Bankers Need To Know About Forecasting Oil Prices,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
- Kilian, Lutz & Baumeister, Christiane, 2012. "What Central Bankers Need to Know about Forecasting Oil Prices," CEPR Discussion Papers 9118, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011.
"The tourism forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008. "The tourism forecasting competition," Monash Econometrics and Business Statistics Working Papers 10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Pesaran, M. Hashem & Timmermann, Allan, 2009.
"Testing Dependence Among Serially Correlated Multicategory Variables,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
- M. Hashem Pesaran & Allan Timmermann, 2006. "Testing Dependence among Serially Correlated Multi-category Variables," CESifo Working Paper Series 1770, CESifo.
- Pesaran, M.H. & Timmermann, A., 2006. "Testing Dependence Among Serially Correlated Multi-category Variables," Cambridge Working Papers in Economics 0648, Faculty of Economics, University of Cambridge.
- Pesaran, M. Hashem & Timmermann, Allan, 2006. "Testing Dependence among Serially Correlated Multi-Category Variables," IZA Discussion Papers 2196, Institute of Labor Economics (IZA).
- West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
- Rossana, Robert J & Seater, John J, 1995.
"Temporal Aggregation and Economic Time Series,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-451, October.
- John J. Seater & Robert J. Rossana, "undated". "Temporal Aggregation and Economic Time Series," Working Paper Series 19, North Carolina State University, Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Reinhard Ellwanger and Stephen Snudden, 2023. "Futures Prices are Useful Predictors of the Spot Price of Crude Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
- Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Markos Farag, Stephen Snudden, Greg Upton, 2024. "Can Futures Prices Predict the Real Price of Primary Commodities?," LCERPA Working Papers jc0145, Laurier Centre for Economic Research and Policy Analysis, revised 2024.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Nima Nonejad, 2024. "Point forecasts of the price of crude oil: an attempt to “beat” the end-of-month random-walk benchmark," Empirical Economics, Springer, vol. 67(4), pages 1497-1539, October.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Etienne, Xiaoli, 2015.
"Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices,"
2015 Conference, August 9-14, 2015, Milan, Italy
211626, International Association of Agricultural Economists.
- Etienne, Xiaoli L., 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205124, Agricultural and Applied Economics Association.
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014.
"Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Forecasting Mixed Frequency Time Series with ECM-MIDAS Models," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
More about this item
Keywords
Forecasting and Prediction Methods; Interest Rates; Commodity Prices;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
- F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2024-01-01 (Econometric Time Series)
- NEP-FOR-2024-01-01 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wlu:lcerpa:bm0142. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Glen Stewart (email available below). General contact details of provider: https://edirc.repec.org/data/sbwluca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.