Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Wieland, Volker & Wolters, Maik, 2013.
"Forecasting and Policy Making,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325,
Elsevier.
- Wieland, Volker & Wolters, Maik Hendrik, 2012. "Forecasting and policy making," IMFS Working Paper Series 62, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Whitney K. Newey & Kenneth D. West, 1994.
"Automatic Lag Selection in Covariance Matrix Estimation,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
- Newey, W.K. & West, K.D., 1992. "Automatic Lag Selection in Covariance Matrix Estimation," Working papers 9220, Wisconsin Madison - Social Systems.
- Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
- Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016.
"Dynamic prediction pools: An investigation of financial frictions and forecasting performance,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," NBER Working Papers 20575, National Bureau of Economic Research, Inc.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic prediction pools: an investigation of financial frictions and forecasting performance," Staff Reports 695, Federal Reserve Bank of New York.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Graham Elliott & Allan Timmermann, 2016.
"Economic Forecasting,"
Economics Books,
Princeton University Press,
edition 1, number 10740.
- Graham Elliott & Allan Timmermann, 2008. "Economic Forecasting," Journal of Economic Literature, American Economic Association, vol. 46(1), pages 3-56, March.
- Timmermann, Allan & Elliott, Graham, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
- James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- James H. Stock & Mark W. Watson, 2017. "Twenty Years of Time Series Econometrics in Ten Pictures," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 59-86, Spring.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Korobilis, D, 2017.
"Forecasting with many predictors using message passing algorithms,"
Essex Finance Centre Working Papers
19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Fossati, Sebastian, 2017. "Testing for State-Dependent Predictive Ability," Working Papers 2017-9, University of Alberta, Department of Economics.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
- Boriss Siliverstovs, 2020.
"Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts,"
Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
- Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
- James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goulet Coulombe, Philippe & Marcellino, Massimiliano & Stevanović, Dalibor, 2021.
"Can Machine Learning Catch The Covid-19 Recession?,"
National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 71-109, May.
- Marcellino, Massimiliano & Stevanovic, Dalibor & Goulet Coulombe, Philippe, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CEPR Discussion Papers 15867, C.E.P.R. Discussion Papers.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CIRANO Working Papers 2021s-09, CIRANO.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Working Papers 21-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Papers 2103.01201, arXiv.org.
- Boriss Siliverstovs, 2021. "New York FED Staff Nowcasts and Reality: What Can We Learn about the Future, the Present, and the Past?," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Marine Carrasco & Barbara Rossi, 2016.
"In-Sample Inference and Forecasting in Misspecified Factor Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
- Marine Carrasco & Barbara Rossi, 2016. "In-sample inference and forecasting in misspecified factor models," Economics Working Papers 1530, Department of Economics and Business, Universitat Pompeu Fabra.
- Rossi, Barbara & Carrasco, Marine, 2016. "In-sample Inference and Forecasting in Misspecified Factor Models," CEPR Discussion Papers 11388, C.E.P.R. Discussion Papers.
- Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024.
"Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2023. "Advances in Nowcasting Economic Activity: The Role of Heterogeneous Dynamics and Fat Tails," CEPR Discussion Papers 17800, C.E.P.R. Discussion Papers.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018.
"Dynamic factor model with infinite‐dimensional factor space: Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," Center for Economic Research (RECent) 120, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
- Tommaso Proietti, 2016.
"On the Selection of Common Factors for Macroeconomic Forecasting,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628,
Emerald Group Publishing Limited.
- Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, Department of Economics and Business Economics, Aarhus University.
- Alessandro Giovannelli & Tommaso Proietti, 2015. "On the Selection of Common Factors for Macroeconomic Forecasting," CEIS Research Paper 332, Tor Vergata University, CEIS, revised 12 Mar 2015.
- Giovannelli, Alessandro & Proietti, Tommaso, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," MPRA Paper 60673, University Library of Munich, Germany.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024.
"Out-of-sample predictability in predictive regressions with many predictor candidates,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
- Pitarakis, Jean-Yves, 2020. "Out of sample predictability in predictive regressions with many predictor candidates," UC3M Working papers. Economics 31554, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Jesus Gonzalo & Jean-Yves Pitarakis, 2023. "Out of Sample Predictability in Predictive Regressions with Many Predictor Candidates," Papers 2302.02866, arXiv.org, revised Oct 2023.
- Hännikäinen, Jari, 2017.
"When does the yield curve contain predictive power? Evidence from a data-rich environment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
- Hännikäinen, Jari, 2016. "When does the yield curve contain predictive power? Evidence from a data-rich environment," MPRA Paper 70489, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "When does the yield curve contain predictive power? Evidence from a data-rich environment," Working Papers 1603, Tampere University, Faculty of Management and Business, Economics.
More about this item
Keywords
forecast evaluation; dynamic factor models; business cycle asymmetries; big macroeconomic datasets; US;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-03-16 (Big Data)
- NEP-FOR-2020-03-16 (Forecasting)
- NEP-MAC-2020-03-16 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ltv:wpaper:202002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Konstantins Benkovskis (email available below). General contact details of provider: https://edirc.repec.org/data/bolgvlv.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.