IDEAS home Printed from https://ideas.repec.org/p/tut/cremwp/2024-14.html
   My bibliography  Save this paper

Assessing Cryptomarket Risks: Macroeconomic Forces, Market Shocks and Behavioural Dynamics

Author

Listed:
  • Josué Thélissaint

    (Univ Rennes, CNRS, CREM – UMR6211, F-35000 Rennes, France)

Abstract

This paper aims at exploring risk factors which are driving forces behind the global cryptomarket behaviour. Its purpose is to enhance understanding of the transmission mechanisms of aggregated fluctuations. Identification of such factors will contribute to laying foundation for anchoring expectations from a forward-looking perspective. We use the Factor-Augmented Autoregression (FAVAR) framework to estimate the latent factors. Nevertheless due to asymmetries, assessments are performed through a Threshold-VAR which helps to highlight predictive power of the factors. Six leading risk factors are identified. Each of them represents distinct market risks and exerts asymmetric effects on cryptomarket dynamics. Especially, the first factor (F1) encapsulates global market risks associated with volatility and collapse uncertainty. It orchestrates regime transitions among low−, medium−, and high − risk states. The sixth factor (F6) reflects market optimism toward cryptos. It shows a notable negative correlation (− 37%) with F1 over 20 business days. While F1 demonstrates high persistence, other factors exhibit mean-reverting behaviour. Furthermore, our findings are complemented by insights into the structure of shock transmission across different time horizons, highlighting the joint influence of macroeconomic and emotional shocks on market trajectories. Overall, this paper contributes to the existing literature as it offers a novel perspective on risk factors in cryptomarkets and it underscores specific issues for further research.

Suggested Citation

  • Josué Thélissaint, 2024. "Assessing Cryptomarket Risks: Macroeconomic Forces, Market Shocks and Behavioural Dynamics," Economics Working Paper Archive (University of Rennes & University of Caen) 2024-14, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
  • Handle: RePEc:tut:cremwp:2024-14
    as

    Download full text from publisher

    File URL: https://ged.univ-rennes1.fr/nuxeo/site/esupversions/cf2c56f3-acee-4daa-a3e9-4f30d78b5618
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo, Andrew W. & Mackinlay, A. Craig, 1997. "Maximizing Predictability In The Stock And Bond Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 102-134, January.
    2. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2023. "Forecasting with Economic News," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 708-719, July.
    3. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    4. Afonso, António & Martins, Manuel M.F., 2012. "Level, slope, curvature of the sovereign yield curve, and fiscal behaviour," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1789-1807.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. Ms. Natasha X Che & Alexander Copestake & Davide Furceri & Tammaro Terracciano, 2023. "The Crypto Cycle and US Monetary Policy," IMF Working Papers 2023/163, International Monetary Fund.
    8. Ahn, Yongkil & Kim, Dongyeon, 2021. "Emotional trading in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 42(C).
    9. Lee, Kangsan & Jeong, Daeyoung, 2023. "Too much is too bad: The effect of media coverage on the price volatility of cryptocurrencies," Journal of International Money and Finance, Elsevier, vol. 133(C).
    10. Charfeddine, Lanouar & Benlagha, Noureddine & Maouchi, Youcef, 2020. "Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors," Economic Modelling, Elsevier, vol. 85(C), pages 198-217.
    11. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr & Vo, Xuan Vinh, 2021. "The pricing of bad contagion in cryptocurrencies: A four-factor pricing model," Finance Research Letters, Elsevier, vol. 41(C).
    12. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    13. Ullah, Subhan & Attah-Boakye, Rexford & Adams, Kweku & Zaefarian, Ghasem, 2022. "Assessing the influence of celebrity and government endorsements on bitcoin’s price volatility," Journal of Business Research, Elsevier, vol. 145(C), pages 228-239.
    14. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    15. Savor, Pavel & Wilson, Mungo, 2013. "How Much Do Investors Care About Macroeconomic Risk? Evidence from Scheduled Economic Announcements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 343-375, April.
    16. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    17. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    18. Benjamin Johnson & Tianze Sun & Daniel Stjepanović & Giang Vu & Gary C. K. Chan, 2023. "“Buy High, Sell Low”: A Qualitative Study of Cryptocurrency Traders Who Experience Harm," IJERPH, MDPI, vol. 20(10), pages 1-16, May.
    19. Ahmed H. Elsayed & Ricardo M. Sousa, 2024. "International monetary policy and cryptocurrency markets: dynamic and spillover effects," The European Journal of Finance, Taylor & Francis Journals, vol. 30(16), pages 1855-1875, November.
    20. Takeshi Inuduka & Akihito Yokose & Shunsuke Managi, 2024. "Influencing cryptocurrency: analyzing celebrity sentiments on X (formerly Twitter) and their impact on bitcoin prices," Digital Finance, Springer, vol. 6(3), pages 379-426, September.
    21. Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022. "Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models," Finance Research Letters, Elsevier, vol. 49(C).
    22. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    23. Fama, Eugene F., 1996. "Multifactor Portfolio Efficiency and Multifactor Asset Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(4), pages 441-465, December.
    24. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    25. Huang, Sherena S., 2024. "Liquidity dynamics between virtual and equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    26. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    27. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2020. "A three-factor pricing model for cryptocurrencies," Finance Research Letters, Elsevier, vol. 34(C).
    28. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    29. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    30. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    31. Simran, & Sharma, Anil Kumar, 2023. "Asymmetric impact of economic policy uncertainty on cryptocurrency market: Evidence from NARDL approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    32. Borgards, Oliver & Czudaj, Robert L., 2020. "The prevalence of price overreactions in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    33. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    34. Stephen Morris & Hyun Song Shin, 2002. "Social Value of Public Information," American Economic Review, American Economic Association, vol. 92(5), pages 1521-1534, December.
    35. Castle, Jennifer L. & Kurita, Takamitsu, 2024. "Stability between cryptocurrency prices and the term structure," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    36. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    37. Beckmann, Joscha & Geldner, Teo & Wüstenfeld, Jan, 2024. "The relevance of media sentiment for small and large scale bitcoin investors," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayssal Jamhamed & Franck Martin & Fabien Rondeau & Josué Thélissaint & Stéphane Tufféry, 2024. "Regime-Specific Dynamics and Informational Efficiency in Cryptomarkets: Evidence from Gaussian Mixture Models," Economics Working Paper Archive (University of Rennes & University of Caen) 2024-13, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    2. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    3. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, October.
    4. Joel M. Vanden, 2021. "Equilibrium asset pricing and the cross section of expected returns," Annals of Finance, Springer, vol. 17(2), pages 153-186, June.
    5. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
    6. Virk, Nader Shahzad & Butt, Hilal Anwar, 2022. "Asset pricing anomalies: Liquidity risk hedgers or liquidity risk spreaders?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    7. Jian Huang & Huazhang Liu, 2019. "Examination and Modification of Multi-Factor Model in Explaining Stock Excess Return with Hybrid Approach in Empirical Study of Chinese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-30, May.
    8. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    9. Hanauer, Matthias X. & Lesnevski, Pavel & Smajlbegovic, Esad, 2023. "Surprise in short interest," Journal of Financial Markets, Elsevier, vol. 65(C).
    10. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    11. Faiza Siddiqui & Yusheng Kong & Hyder Ali & Salma Naz, 2024. "Energy-Related Uncertainty and Idiosyncratic Return Volatility: Implications for Sustainable Investment Strategies in Chinese Firms," Sustainability, MDPI, vol. 16(17), pages 1-39, August.
    12. Lars Hornuf & Gül Yüksel, 2022. "The Performance of Socially Responsible Investments: A Meta-Analysis," CESifo Working Paper Series 9724, CESifo.
    13. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    14. Jank, Stephan & Roling, Christoph & Smajlbegovic, Esad, 2021. "Flying under the radar: The effects of short-sale disclosure rules on investor behavior and stock prices," Journal of Financial Economics, Elsevier, vol. 139(1), pages 209-233.
    15. Kan, Raymond & Wang, Xiaolu & Zheng, Xinghua, 2024. "In-sample and out-of-sample Sharpe ratios of multi-factor asset pricing models," Journal of Financial Economics, Elsevier, vol. 155(C).
    16. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    17. Beck, Elliot & De Nard, Gianluca & Wolf, Michael, 2023. "Improved inference in financial factor models," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 364-379.
    18. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    20. Sawaliya, Priya & Sinha, Pankaj, 2018. "Behaviour of asset pricing models in pre and post-recession period: an evidence from India," MPRA Paper 93084, University Library of Munich, Germany, revised 22 Jan 2019.

    More about this item

    Keywords

    cryptomarkets; common risk factor; factor-augmented vector auto-regression; nonlinear impulse response function; time-varying frequency connectednes;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tut:cremwp:2024-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: GERMAIN Lucie (email available below). General contact details of provider: https://edirc.repec.org/data/crmrefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.