IDEAS home Printed from https://ideas.repec.org/a/wly/jmoncb/v52y2020i1p205-228.html
   My bibliography  Save this article

Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts

Author

Listed:
  • JULIETA CAUNEDO
  • RICCARDO DICECIO
  • IVANA KOMUNJER
  • MICHAEL T. OWYANG

Abstract

Forecasts are a central component of policymaking; the Federal Reserve's forecasts are published in a document called the Greenbook. Previous studies of the Greenbook's inflation forecasts have found them to be rationalizable but asymmetric if considering particular subperiods, for example, before and after the Volcker appointment. In these papers, forecasts are analyzed in isolation, assuming policymakers value them independently. We analyze the Greenbook forecasts in a framework in which the forecast errors for different variables are allowed to interact. We find that allowing the losses to interact makes the unemployment forecasts virtually symmetric, the output forecasts symmetric prior to the Volcker appointment, and the inflation forecasts symmetric after the onset of the Great Moderation.

Suggested Citation

  • Julieta Caunedo & Riccardo Dicecio & Ivana Komunjer & Michael T. Owyang, 2020. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 205-228, February.
  • Handle: RePEc:wly:jmoncb:v:52:y:2020:i:1:p:205-228
    DOI: 10.1111/jmcb.12590
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jmcb.12590
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jmcb.12590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jansen, Dennis W. & Kishan, Ruby Pandey, 1996. "An evaluation of federal reserve forecasting," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 89-109.
    2. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    3. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    4. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    5. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    6. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    7. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    8. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
    9. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    10. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    11. Orphanides, Athanasios, 2004. "Monetary Policy Rules, Macroeconomic Stability, and Inflation: A View from the Trenches," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 151-175, April.
    12. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    13. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    14. Athanasios Orphanides, 2002. "Monetary-Policy Rules and the Great Inflation," American Economic Review, American Economic Association, vol. 92(2), pages 115-120, May.
    15. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    16. Tillmann, Peter, 2010. "The Fed's perceived Phillips curve: Evidence from individual FOMC forecasts," Journal of Macroeconomics, Elsevier, vol. 32(4), pages 1008-1013, December.
    17. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    18. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    19. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    20. Weiss, Andrew A, 1996. "Estimating Time Series Models Using the Relevant Cost Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 539-560, Sept.-Oct.
    21. Dean Croushore, 2012. "Forecast bias in two dimensions," Working Papers 12-9, Federal Reserve Bank of Philadelphia.
    22. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
    2. Berge, Travis J. & Chang, Andrew C. & Sinha, Nitish R., 2019. "Evaluating the conditionality of judgmental forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1627-1635.
    3. Mihaela SIMIONESCU, 2015. "The Evaluation of Global Accuracy of Romanian Inflation Rate Predictions Using Mahalanobis Distance," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 3(1), pages 133-149, March.
    4. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    5. Yoichi Tsuchiya, 2022. "Evaluating plant managers’ production plans over business cycles: asymmetric loss and rationality," SN Business & Economics, Springer, vol. 2(8), pages 1-29, August.
    6. Sinclair, Tara M. & Stekler, H.O. & Carnow, Warren, 2015. "Evaluating a vector of the Fed’s forecasts," International Journal of Forecasting, Elsevier, vol. 31(1), pages 157-164.
    7. Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2023. "Asymmetry and interdependence when evaluating U.S. Energy Information Administration forecasts," Energy Economics, Elsevier, vol. 121(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    2. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    3. Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2020. "Introducing the Bank of Canada staff economic projections database," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 114-129, January.
    4. Bedri Kamil Onur Taş, 2016. "Does the Federal Reserve have Private Information about its Future Actions?," Economica, London School of Economics and Political Science, vol. 83(331), pages 498-517, July.
    5. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    6. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    7. Robert P. Lieli & Augusto Nieto-Barthaburu, 2023. "Forecasting with Feedback," Papers 2308.15062, arXiv.org, revised Aug 2024.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2011. "Monetary Policy, Trend Inflation, and the Great Moderation: An Alternative Interpretation," American Economic Review, American Economic Association, vol. 101(1), pages 341-370, February.
    9. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jul 2024.
    10. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
    11. Hamid Baghestani, 2014. "On the loss structure of federal reserve forecasts of output growth," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 518-527, July.
    12. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    13. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    14. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    15. Hendrickson, Joshua R., 2012. "An overhaul of Federal Reserve doctrine: Nominal income and the Great Moderation," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 304-317.
    16. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    17. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    18. Narayan Kundan Kishor & Monique Newiak, 2014. "The Instability In The Monetary Policy Reaction Function And The Estimation Of Monetary Policy Shocks," Contemporary Economic Policy, Western Economic Association International, vol. 32(2), pages 390-402, April.
    19. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    20. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jmoncb:v:52:y:2020:i:1:p:205-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-2879 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.