IDEAS home Printed from https://ideas.repec.org/p/aah/create/2009-53.html
   My bibliography  Save this paper

Forecasting long memory time series under a break in persistence

Author

Listed:
  • Florian Heinen

    (Leibniz University of Hannover)

  • Philipp Sibbertsen

    (Leibniz University of Hannover)

  • Robinson Kruse

    (Aarhus University and CREATES)

Abstract

We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines the importance of our findings.

Suggested Citation

  • Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2009-53
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/09/rp09_53.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    2. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    3. Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
    4. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    5. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    6. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    9. Philipp Sibbertsen & Robinson Kruse, 2009. "Testing for a break in persistence under long‐range dependencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 263-285, May.
    10. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    11. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    12. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    13. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    14. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    15. Busetti, Fabio & Taylor, A. M. Robert, 2004. "Tests of stationarity against a change in persistence," Journal of Econometrics, Elsevier, vol. 123(1), pages 33-66, November.
    16. Kim, Jae-Young & Belaire-Franch, Jorge & Amador, Rosa Badillo, 2002. "Corrigendum to "Detection of change in persistence of a linear time series" [J. Econom. 95 (2000) 97-116]," Journal of Econometrics, Elsevier, vol. 109(2), pages 389-392, August.
    17. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    18. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Yin‐Wong Cheung, 1993. "Tests For Fractional Integration:A Monte Carlo Investigation," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(4), pages 331-345, July.
    21. Hassler, Uwe & Nautz, Dieter, 2008. "On the persistence of the Eonia spread," Economics Letters, Elsevier, vol. 101(3), pages 184-187, December.
    22. Mohamed Boutahar, 2007. "Optimal prediction with nonstationary ARFIMA model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 95-111.
    23. Valderio A. Reisen, 1994. "ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 335-350, May.
    24. Stephen Leybourne & Robert Taylor & Tae‐Hwan Kim, 2007. "CUSUM of Squares‐Based Tests for a Change in Persistence," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 408-433, May.
    25. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    26. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    27. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Testing for a change in persistence in the presence of non-stationary volatility," Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
    28. Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
    29. Stephen Leybourne & Tae-Hwan Kim & Vanessa Smith & Paul Newbold, 2003. "Tests for a change in persistence against the null of difference-stationarity," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 291-311, December.
    30. Kim, Jae-Young, 2000. "Detection of change in persistence of a linear time series," Journal of Econometrics, Elsevier, vol. 95(1), pages 97-116, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    2. Michael Frömmel & Robinson Kruse, 2012. "Testing for a rational bubble under long memory," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1723-1732, November.
    3. Heinen, Florian & Willert, Juliane, 2011. "Monitoring a change in persistence of a long range dependent time series," Hannover Economic Papers (HEP) dp-479, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Sibbertsen, Philipp & Wegener, Christoph & Basse, Tobias, 2014. "Testing for a break in the persistence in yield spreads of EMU government bonds," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 109-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinen, Florian & Willert, Juliane, 2011. "Monitoring a change in persistence of a long range dependent time series," Hannover Economic Papers (HEP) dp-479, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Philipp Sibbertsen & Robinson Kruse, 2009. "Testing for a break in persistence under long‐range dependencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 263-285, May.
    3. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    4. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    5. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    6. Martins, Luis F. & Rodrigues, Paulo M.M., 2014. "Testing for persistence change in fractionally integrated models: An application to world inflation rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 502-522.
    7. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    9. Uwe Hassler & Jan Scheithauer, 2011. "Detecting changes from short to long memory," Statistical Papers, Springer, vol. 52(4), pages 847-870, November.
    10. Kruse Robinson & Ventosa-Santaulària Daniel & Noriega Antonio E., 2017. "Changes in persistence, spurious regressions and the Fisher hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-28, June.
    11. Frömmel, Michael & Kruse, Robinson, 2015. "Interest rate convergence in the EMS prior to European Monetary Union," Journal of Policy Modeling, Elsevier, vol. 37(6), pages 990-1004.
    12. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    14. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2021. "Long-memory modeling and forecasting: evidence from the U.S. historical series of inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(5), pages 289-310, December.
    15. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Testing for a change in persistence in the presence of non-stationary volatility," Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
    16. Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    18. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    19. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    20. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.

    More about this item

    Keywords

    Long memory time series; Break in persistence; Structural change; Simulation; Forecasting competition;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.