IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/656.html
   My bibliography  Save this paper

Indicadores Sintéticos para la Proyección de Imacec en Chile

Author

Listed:
  • Gonzalo Calvo
  • Miguel Ricaurte

Abstract

This paper studies the informational content of synthetic indicators of economic activity for projecting the monthly index of economic activity (Imacec) for Chile. Comparing them to the Urrutia-Sánchez (2008) model, which employs energy production, and calendar and seasonal components to forecast the Imacec, models employing synthetic leading indicators and financial conditions indicators are competitive in terms of the MSFE. Moreover, we show that combinations of different forecasting strategies with small bias present improvements in terms of the MSFE with respect to individual models. We also show that, due to their inertial behavior, projections with synthetic indicators display errors that last for many periods after an exogenous event (such as an earthquake). Specifications with variables that quickly adjust to economic activity, such as energy consumption, do not have this problem.

Suggested Citation

  • Gonzalo Calvo & Miguel Ricaurte, 2012. "Indicadores Sintéticos para la Proyección de Imacec en Chile," Working Papers Central Bank of Chile 656, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:656
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_656.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Michael Pedersen, 2009. "Un indicador líder compuesto para la actividad económica en Chile," Monetaria, CEMLA, vol. 0(2), pages 181-208, abril-jun.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    5. Marcela Urrutia A. & Andrea Sánchez Y., 2008. "Generación de Energía Eléctrica en un Modelo para Proyectar el IMACEC," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 11(2), pages 99-108, August.
    6. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    7. Luis Ceballos S. & Mario González F., 2012. "Indicador de Condiciones Económicas," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 15(1), pages 105-117, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolás Chanut & Mario Marcel C. & Carlos A. Medel V., 2019. "Can economic perception surveys improve macroeconomic forecasting in Chile?," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(3), pages 034-097, December.
    2. Fernando Faure & Carlos A. Medel, 2020. "Does the Exposure to the Business Cycle Improve Consumer Perceptions for Forecasting? Microdata Evidence from Chile," Working Papers Central Bank of Chile 888, Central Bank of Chile.
    3. Luis Ceballos S. & Miguel Fuentes D. & Damián Romero C., 2013. "Efectos del Riesgo Financiero en Fuentes de Financiamiento de Empresas, Hogares y Bancos," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 16(2), pages 134-148, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    2. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Mathijs Cosemans & Rik Frehen & Peter C. Schotman & Rob Bauer, 2016. "Estimating Security Betas Using Prior Information Based on Firm Fundamentals," The Review of Financial Studies, Society for Financial Studies, vol. 29(4), pages 1072-1112.
    4. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    5. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    6. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    7. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    8. Johanna Posch & Fabio Rumler, 2015. "Semi‐Structural Forecasting of UK Inflation Based on the Hybrid New Keynesian Phillips Curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 145-162, March.
    9. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    10. Marie Bessec & Julien Fouquau & Sophie Meritet, 2016. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Applied Economics, Taylor & Francis Journals, vol. 48(5), pages 361-378, January.
    11. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    12. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    13. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    14. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    15. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    16. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    17. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    18. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
    19. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    20. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.