Model Averaging in Predictive Regressions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Chu‐An Liu & Biing‐Shen Kuo, 2016. "Model averaging in predictive regressions," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- Toru Kitagawa & Chris Muris, 2013.
"Covariate selection and model averaging in semiparametric estimation of treatment effects,"
CeMMAP working papers
CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Gerda Claeskens & Raymond J. Carroll, 2007. "An asymptotic theory for model selection inference in general semiparametric problems," Biometrika, Biometrika Trust, vol. 94(2), pages 249-265.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Douglas Staiger & James H. Stock, 1997.
"Instrumental Variables Regression with Weak Instruments,"
Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
- Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
- Naoya Sueishi, 2013. "Generalized Empirical Likelihood-Based Focused Information Criterion and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-16, July.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
- Liu, Chu-An, 2015.
"Distribution theory of the least squares averaging estimator,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
- Liu, Chu-An, 2013. "Distribution Theory of the Least Squares Averaging Estimator," MPRA Paper 54201, University Library of Munich, Germany.
- DiTraglia, Francis J., 2016.
"Using invalid instruments on purpose: Focused moment selection and averaging for GMM,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
- Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM," PIER Working Paper Archive 14-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Aug 2014.
- Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
- Min, Chung-ki & Zellner, Arnold, 1993.
"Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates,"
Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
- Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
- Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
- White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
- Xinyu Zhang & Alan Wan & Sherry Zhou, 2012. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Claeskens G. & Hjort N.L., 2003. "The Focused Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 900-916, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
- Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
- Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Hounyo, Ulrich & Lahiri, Kajal, 2023.
"Estimating the variance of a combined forecast: Bootstrap-based approach,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
- Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
- Benchimol, Andrés, 2017. "Proyección de mortalidad en España mediante mixturas de modelos y análisis del impacto económico del riesgo de longevidad /Mortality Projection in Spain through Mixtures of Models and Analysis of the ," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 341-366, Mayo.
- Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
- Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Chu-An, 2015.
"Distribution theory of the least squares averaging estimator,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
- Liu, Chu-An, 2013. "Distribution Theory of the Least Squares Averaging Estimator," MPRA Paper 54201, University Library of Munich, Germany.
- Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021.
"Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
- Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2016. "Focused Information Criterion and Model Averaging for Large Panels with a Multifactor Error Structure," IEAS Working Paper : academic research 16-A016, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
- Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Carlo Altavilla & Matteo Ciccarelli, 2006.
"Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area,"
Discussion Papers
7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Matteo Ciccarelli & Carlo Altavilla, 2007. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro area," 2007 Meeting Papers 315, Society for Economic Dynamics.
- Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Inflation Forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area," Working Paper Series 725, European Central Bank.
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021.
"Time-varying model averaging,"
Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
- Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
More about this item
Keywords
Forecast combination; Local asymptotic theory; Plug-in estimators.;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2014-03-15 (Econometrics)
- NEP-FOR-2014-03-15 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.