IDEAS home Printed from https://ideas.repec.org/a/wly/revfec/v38y2020i2p352-378.html
   My bibliography  Save this article

Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?

Author

Listed:
  • Hubert Dichtl

Abstract

Determining whether investment strategies exist that provide higher (risk‐adjusted) returns than buying and holding the S&P 500 stock market index is not only highly relevant for finance theory, but also for the asset management industry. This study conducts a comprehensive test using realistic investment strategies based on monthly seasonalities, technical indicators, and fundamental factors (over 4,100 strategies in total). To assess statistical significance, we use Hansen's data‐snooping‐resistant SPA test. The results show that only investment strategies trying to exploit underreaction and overreaction effects with technical indicators dominate the buy‐and‐hold strategy in some simulation setups. These investment strategies are clearly superior to the strategies based on seasonalities and fundamental factors. Given that underreaction and overreaction effects are mainly justified with cognitive biases, our results support the economic relevance of behavioral finance insights.

Suggested Citation

  • Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
  • Handle: RePEc:wly:revfec:v:38:y:2020:i:2:p:352-378
    DOI: 10.1002/rfe.1078
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/rfe.1078
    Download Restriction: no

    File URL: https://libkey.io/10.1002/rfe.1078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Cao, Melanie & Wei, Jason, 2005. "Stock market returns: A note on temperature anomaly," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1559-1573, June.
    4. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    5. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    6. William N. Goetzmann & Dasol Kim & Alok Kumar & Qin Wang, 2015. "Weather-Induced Mood, Institutional Investors, and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 73-111.
    7. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    8. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.
    9. Blitz, D.C. & van Vliet, P., 2008. "Global Tactical Cross-Asset Allocation: Applying Value and Momentum Across Asset Classes," ERIM Report Series Research in Management ERS-2008-033-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    11. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    12. Anthony W. Lynch & Pierluigi Balduzzi, 2000. "Predictability and Transaction Costs: The Impact on Rebalancing Rules and Behavior," Journal of Finance, American Finance Association, vol. 55(5), pages 2285-2309, October.
    13. Clare, Andrew & Seaton, James & Smith, Peter N. & Thomas, Stephen, 2016. "The trend is our friend: Risk parity, momentum and trend following in global asset allocation," Journal of Behavioral and Experimental Finance, Elsevier, vol. 9(C), pages 63-80.
    14. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    15. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    16. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    17. Andrea Frazzini, 2006. "The Disposition Effect and Underreaction to News," Journal of Finance, American Finance Association, vol. 61(4), pages 2017-2046, August.
    18. Yu-Chin Hsu & Chung-Ming Kuan & Meng-Feng Yen, 2014. "A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 730-755.
    19. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    20. Paskalis Glabadanidis, 2014. "The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 161-202, June.
    21. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    22. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    23. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    24. Mark J. Kamstra & Lisa A. Kramer & Maurice D. Levi, 2003. "Winter Blues: A SAD Stock Market Cycle," American Economic Review, American Economic Association, vol. 93(1), pages 324-343, March.
    25. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 1.
    26. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    27. Sven Bouman & Ben Jacobsen, 2002. "The Halloween Indicator, "Sell in May and Go Away": Another Puzzle," American Economic Review, American Economic Association, vol. 92(5), pages 1618-1635, December.
    28. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    29. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    30. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    31. Laurens Swinkels & Pim van Vliet, 2012. "An anatomy of calendar effects," Journal of Asset Management, Palgrave Macmillan, vol. 13(4), pages 271-286, August.
    32. Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
    33. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 606-628.
    34. Dichtl, Hubert & Drobetz, Wolfgang, 2014. "Are stock markets really so inefficient? The case of the “Halloween Indicator”," Finance Research Letters, Elsevier, vol. 11(2), pages 112-121.
    35. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    36. Dichtl, Hubert & Drobetz, Wolfgang, 2015. "Sell in May and Go Away: Still good advice for investors?," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 29-43.
    37. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    38. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    39. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    40. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    41. Valeriy Zakamulin, 2014. "The real-life performance of market timing with moving average and time-series momentum rules," Journal of Asset Management, Palgrave Macmillan, vol. 15(4), pages 261-278, August.
    42. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    43. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    44. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    45. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    46. Lasse Heje Pedersen, 2015. "Efficiently Inefficient: How Smart Money Invests and Market Prices Are Determined," Economics Books, Princeton University Press, edition 1, number 10441.
    47. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    48. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    49. T. Clifton Green & Byoung-Hyoun Hwang, 2012. "Initial Public Offerings as Lotteries: Skewness Preference and First-Day Returns," Management Science, INFORMS, vol. 58(2), pages 432-444, February.
    50. Shefrin, Hersh & Statman, Meir, 1985. "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence," Journal of Finance, American Finance Association, vol. 40(3), pages 777-790, July.
    51. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    52. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    53. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    54. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    55. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 2.
    56. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    57. Lucey, Brian M & Zhao, Shelly, 2008. "Halloween or January? Yet another puzzle," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1055-1069, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, October.
    3. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    4. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    5. Yafeng Qin & Guoyao Pan & Min Bai, 2020. "Improving market timing of time series momentum in the Chinese stock market," Applied Economics, Taylor & Francis Journals, vol. 52(43), pages 4711-4725, September.
    6. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    7. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    8. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    9. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    10. Mingwei Sun & Paskalis Glabadanidis, 2022. "Can technical indicators predict the Chinese equity risk premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 114-142, March.
    11. Baur, Dirk G. & Dichtl, Hubert & Drobetz, Wolfgang & Wendt, Viktoria-Sophie, 2020. "Investing in gold – Market timing or buy-and-hold?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    12. Paskalis Glabadanidis, 2015. "Market Timing With Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 387-425, September.
    13. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    14. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    15. Tatiana PÎŞCHINA & Romeo Fortuna, 2017. "Moldova’s Phenomenon: Can Foreign Investments Help Out of the Poverty Circle?," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 3, ejes_v3_i.
    16. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    17. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    18. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    19. Dichtl, Hubert & Drobetz, Wolfgang, 2015. "Sell in May and Go Away: Still good advice for investors?," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 29-43.
    20. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:revfec:v:38:y:2020:i:2:p:352-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1873-5924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.