IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.00871.html
   My bibliography  Save this paper

State-dependent Asset Allocation Using Neural Networks

Author

Listed:
  • Reza Bradrania
  • Davood Pirayesh Neghab

Abstract

Changes in market conditions present challenges for investors as they cause performance to deviate from the ranges predicted by long-term averages of means and covariances. The aim of conditional asset allocation strategies is to overcome this issue by adjusting portfolio allocations to hedge changes in the investment opportunity set. This paper proposes a new approach to conditional asset allocation that is based on machine learning; it analyzes historical market states and asset returns and identifies the optimal portfolio choice in a new period when new observations become available. In this approach, we directly relate state variables to portfolio weights, rather than firstly modeling the return distribution and subsequently estimating the portfolio choice. The method captures nonlinearity among the state (predicting) variables and portfolio weights without assuming any particular distribution of returns and other data, without fitting a model with a fixed number of predicting variables to data and without estimating any parameters. The empirical results for a portfolio of stock and bond indices show the proposed approach generates a more efficient outcome compared to traditional methods and is robust in using different objective functions across different sample periods.

Suggested Citation

  • Reza Bradrania & Davood Pirayesh Neghab, 2022. "State-dependent Asset Allocation Using Neural Networks," Papers 2211.00871, arXiv.org.
  • Handle: RePEc:arx:papers:2211.00871
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.00871
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    3. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    4. Pyo, Sujin & Lee, Jaewook, 2018. "Exploiting the low-risk anomaly using machine learning to enhance the Black–Litterman framework: Evidence from South Korea," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 1-12.
    5. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    6. Harvey, Campbell R., 2001. "The specification of conditional expectations," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 573-637, December.
    7. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    8. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    9. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    10. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    11. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    12. Sergio Ortobelli & Sebastiano Vitali & Marco Cassader & Tomáš Tichý, 2018. "Portfolio selection strategy for fixed income markets with immunization on average," Annals of Operations Research, Springer, vol. 260(1), pages 395-415, January.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Whitelaw, Robert F, 1994. "Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns," Journal of Finance, American Finance Association, vol. 49(2), pages 515-541, June.
    15. Giorgio Costa & Roy H. Kwon, 2019. "Risk parity portfolio optimization under a Markov regime-switching framework," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 453-471, March.
    16. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    17. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    18. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    19. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    20. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    21. Angelos Kanas, 2008. "A Multivariate Regime Switching Approach To The Relation Between The Stock Market, The Interest Rate And Output," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(07), pages 657-671.
    22. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    23. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    24. Afshin Oroojlooyjadid & Lawrence V. Snyder & Martin Takáč, 2020. "Applying deep learning to the newsvendor problem," IISE Transactions, Taylor & Francis Journals, vol. 52(4), pages 444-463, April.
    25. Bekaert, Geert & Hodrick, Robert J, 1992. "Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 467-509, June.
    26. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    27. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    28. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradrania, Reza & Pirayesh Neghab, Davood, 2021. "State-dependent asset allocation using neural networks," MPRA Paper 115254, University Library of Munich, Germany.
    2. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    3. Reza Bradrania & Davood Pirayesh Neghab & Mojtaba Shafizadeh, 2022. "State-dependent stock selection in index tracking: a machine learning approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 1-28, March.
    4. Bali, Turan G. & Wu, Liuren, 2010. "The role of exchange rates in intertemporal risk-return relations," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1670-1686, December.
    5. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    6. Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
    7. Juan Carlos Escanciano & Juan Carlos Pardo-Fernández & Ingrid Van Keilegom, 2017. "Semiparametric Estimation of Risk–Return Relationships," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 40-52, January.
    8. David Allen & Stephen Satchell & Colin Lizieri, 2024. "Quantifying the non-Gaussian gain," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 1-18, February.
    9. repec:uts:finphd:39 is not listed on IDEAS
    10. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    11. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Turan Bali & Kamil Yilmaz, 2009. "The Intertemporal Relation between Expected Return and Risk on Currency," Koç University-TUSIAD Economic Research Forum Working Papers 0909, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.
    13. Shanken, Jay & Tamayo, Ane, 2012. "Payout yield, risk, and mispricing: A Bayesian analysis," Journal of Financial Economics, Elsevier, vol. 105(1), pages 131-152.
    14. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    15. Bruno Solnik, 1991. "Finance Theory and Investment Management," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 127(III), pages 303-324, September.
    16. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    17. repec:uts:finphd:38 is not listed on IDEAS
    18. Ang, Andrew & Liu, Jun, 2007. "Risk, return, and dividends," Journal of Financial Economics, Elsevier, vol. 85(1), pages 1-38, July.
    19. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    20. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    21. Wang, Wenzhao, 2018. "Investor sentiment and the mean-variance relationship: European evidence," Research in International Business and Finance, Elsevier, vol. 46(C), pages 227-239.
    22. De Santis, Giorgio & Gerard, Bruno, 1998. "How big is the premium for currency risk?," Journal of Financial Economics, Elsevier, vol. 49(3), pages 375-412, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.00871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.