IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i3p1008-1031.html
   My bibliography  Save this article

New perspectives on forecasting inflation in emerging market economies: An empirical assessment

Author

Listed:
  • Duncan, Roberto
  • Martínez-García, Enrique

Abstract

We use a broad-range set of inflation models and pseudo out-of-sample forecasts to assess their predictive ability among 14 emerging market economies (EMEs) at different horizons (1–12 quarters ahead) with quarterly data over the period 1980Q1-2016Q4. We find, in general, that a simple arithmetic average of the current and three previous observations (the RW-AO model) consistently outperforms its standard competitors—based on the root mean squared prediction error (RMSPE) and on the accuracy in predicting the direction of change. These include conventional models based on domestic factors, existing open-economy Phillips curve-based specifications, factor-augmented models, and time-varying parameter models. Often, the RMSPE and directional accuracy gains of the RW-AO model are shown to be statistically significant. Our results are robust to forecast combinations, intercept corrections, alternative transformations of the target variable, different lag structures, and additional tests of (conditional) predictability. We argue that the RW-AO model is successful among EMEs because it is a straightforward method to downweight later data, which is a useful strategy when there are unknown structural breaks and model misspecification.

Suggested Citation

  • Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:1008-1031
    DOI: 10.1016/j.ijforecast.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019300639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Laurence Ball & Sandeep Mazumder, 2019. "A Phillips Curve with Anchored Expectations and Short‐Term Unemployment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 111-137, February.
    3. Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
    4. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    5. Richard Meese & Kenneth Rogoff, 1983. "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 67-112, National Bureau of Economic Research, Inc.
    6. Jeffrey Frankel & David Parsley & Shang-Jin Wei, 2012. "Slow Pass-through Around the World: A New Import for Developing Countries?," Open Economies Review, Springer, vol. 23(2), pages 213-251, April.
    7. Christopher G. Gibbs, 2017. "Forecast combination, non-linear dynamics, and the macroeconomy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 653-686, March.
    8. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    9. Pablo Pincheira & Andrés Gatty, 2016. "Forecasting Chilean inflation with international factors," Empirical Economics, Springer, vol. 51(3), pages 981-1010, November.
    10. Carlos A. Medel & Michael Pedersen & Pablo M. Pincheira, 2016. "The Elusive Predictive Ability of Global Inflation," International Finance, Wiley Blackwell, vol. 19(2), pages 120-146, June.
    11. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    12. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    13. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    14. Aaron Mehrotra & James Yetman, 2018. "Decaying Expectations: What Inflation Forecasts Tell Us about the Anchoring of Inflation Expectations," International Journal of Central Banking, International Journal of Central Banking, vol. 14(5), pages 55-101, December.
    15. Pecora, Nicolò & Spelta, Alessandro, 2017. "Managing monetary policy in a New Keynesian model with many beliefs types," Economics Letters, Elsevier, vol. 150(C), pages 53-58.
    16. Pablo M. Pincheira & Carlos A. Medel, 2015. "Forecasting Inflation with a Simple and Accurate Benchmark: The Case of the US and a Set of Inflation Targeting Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 2-29, January.
    17. Di Bartolomeo, Giovanni & Di Pietro, Marco & Giannini, Bianca, 2016. "Optimal monetary policy in a New Keynesian model with heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 373-387.
    18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    19. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    20. Philippe Bacchetta & Eric van Wincoop & Toni Beutler, 2010. "Can Parameter Instability Explain the Meese-Rogoff Puzzle?," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 6(1), pages 125-173.
    21. Michael Woodford, 2008. "How Important Is Money in the Conduct of Monetary Policy?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(8), pages 1561-1598, December.
    22. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    23. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    24. Guido Ascari, 2004. "Staggered Prices and Trend Inflation: Some Nuisances," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(3), pages 642-667, July.
    25. Assenza, T. & Heemeijer, P. & Hommes, C.H. & Massaro, D., 2011. "Individual Expectations and Aggregate Macro Behavior," CeNDEF Working Papers 11-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    26. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    27. Cole, Harold L. & Obstfeld, Maurice, 1991. "Commodity trade and international risk sharing : How much do financial markets matter?," Journal of Monetary Economics, Elsevier, vol. 28(1), pages 3-24, August.
    28. Sahuc, Jean-Guillaume, 2006. "Partial indexation, trend inflation, and the hybrid Phillips curve," Economics Letters, Elsevier, vol. 90(1), pages 42-50, January.
    29. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    30. M. Hashem Pesaran & Andreas Pick, 2008. "Forecasting Random Walks Under Drift Instability," CESifo Working Paper Series 2293, CESifo.
    31. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    32. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    33. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    34. Roberto Duncan & Enrique Martínez García, 2015. "Forecasting local inflation in Open Economies: What Can a NOEM Model Do?," Globalization Institute Working Papers 235, Federal Reserve Bank of Dallas, revised 21 Dec 2022.
    35. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    36. Guangling (dave Liu & Rangan Gupta, 2007. "A Small‐Scale Dsge Model For Forecasting The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 75(2), pages 179-193, June.
    37. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    38. Grossman, Valerie & Mack, Adrienne & Martínez-García, Enrique, 2014. "A New Database of Global Economic Indicators," Journal of Economic and Social Measurement, IOS Press, issue 3, pages 163-197.
    39. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    40. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    41. N/A, 2016. "The World Economy: Forecast Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 237(1), pages 2-2, August.
    42. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    43. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    44. Gill Hammond, 2012. "State of the art of inflation targeting," Handbooks, Centre for Central Banking Studies, Bank of England, edition 4, number 29, April.
    45. Cukierman, Alex & Webb, Steven B & Neyapti, Bilin, 1992. "Measuring the Independence of Central Banks and Its Effect on Policy Outcomes," The World Bank Economic Review, World Bank, vol. 6(3), pages 353-398, September.
    46. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    47. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    48. Mr. Andre Meier, 2010. "Still Minding the Gap—Inflation Dynamics during Episodes of Persistent Large Output Gaps," IMF Working Papers 2010/189, International Monetary Fund.
    49. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    50. Ana Carolina Garriga, 2016. "Central Bank Independence in the World: A New Data Set," International Interactions, Taylor & Francis Journals, vol. 42(5), pages 849-868, October.
    51. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    52. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    53. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    54. Balcilar, Mehmet & Gupta, Rangan & Kotzé, Kevin, 2015. "Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model," Economic Modelling, Elsevier, vol. 44(C), pages 215-228.
    55. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    56. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    57. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    58. Yun, Tack, 1996. "Nominal price rigidity, money supply endogeneity, and business cycles," Journal of Monetary Economics, Elsevier, vol. 37(2-3), pages 345-370, April.
    59. Pablo Pincheira & Carlos Medel, 2012. "Forecasting Inflation With a Random Walk," Working Papers Central Bank of Chile 669, Central Bank of Chile.
    60. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    61. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    62. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    2. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    3. Patricia Toledo & Roberto Duncan, 2024. "Forecasting food price inflation during global crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1087-1113, July.
    4. Dongchul Cho & Wankeun Oh, 2023. "Predictive Abilities of Inflation Expectations and Implications on Monetary Policy in Korea," Korean Economic Review, Korean Economic Association, vol. 39, pages 257-276.
    5. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
    6. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
    7. Sen Gupta, Abhijit & Iyer, Tara, 2019. "Quarterly Forecasting Model for India’s Economic Growth: Bayesian Vector Autoregression Approach," ADB Economics Working Paper Series 573, Asian Development Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018. "Inflation as a global phenomenon—Some implications for inflation modeling and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
    2. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
    5. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    6. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    7. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    8. Nyoni, Thabani & Nathaniel, Solomon Prince, 2018. "Modeling rates of inflation in Nigeria: an application of ARMA, ARIMA and GARCH models," MPRA Paper 91351, University Library of Munich, Germany.
    9. Roberto Duncan & Enrique Martínez García, 2015. "Forecasting local inflation in Open Economies: What Can a NOEM Model Do?," Globalization Institute Working Papers 235, Federal Reserve Bank of Dallas, revised 21 Dec 2022.
    10. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    11. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    12. Pablo Pincheira & Andrés Gatty, 2016. "Forecasting Chilean inflation with international factors," Empirical Economics, Springer, vol. 51(3), pages 981-1010, November.
    13. Dur, Ayşe & Martínez García, Enrique, 2020. "Mind the gap!—A monetarist view of the open-economy Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    14. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    15. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    17. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    18. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    19. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    20. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.

    More about this item

    Keywords

    Inflation forecasting; Random walk; Emerging market economies; Policy credibility; Robust forecasts;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • F41 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Open Economy Macroeconomics
    • F42 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Policy Coordination and Transmission
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:1008-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.