IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v29y2022i10p867-872.html
   My bibliography  Save this article

Business-cycle reports and the efficiency of macroeconomic forecasts for Germany

Author

Listed:
  • Alexander Foltas
  • Christian Pierdzioch

Abstract

We study the efficiency of growth and inflation forecasts published by three leading German economic research institutes during a period of time ranging from 1970 to 2017. To this end, we examine whether the information used by the research institutes when they formed their forecasts helps to explain the ex-post realized forecast errors. We identify the information that the research institutes used to set up their quantitative forecasts by applying computational-linguistics techniques to decompose the business-cycle reports published by the research institutes into various topics. Our results show that several topics have predictive value for the forecast errors.

Suggested Citation

  • Alexander Foltas & Christian Pierdzioch, 2022. "Business-cycle reports and the efficiency of macroeconomic forecasts for Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 29(10), pages 867-872, June.
  • Handle: RePEc:taf:apeclt:v:29:y:2022:i:10:p:867-872
    DOI: 10.1080/13504851.2021.1896668
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2021.1896668
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2021.1896668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ullrich Heilemann & Herman O. Stekler, 2013. "Has The Accuracy of Macroeconomic Forecasts for Germany Improved?," German Economic Review, Verein für Socialpolitik, vol. 14(2), pages 235-253, May.
    2. Holden, K & Peel, D A, 1990. "On Testing for Unbiasedness and Efficiency of Forecasts," The Manchester School of Economic & Social Studies, University of Manchester, vol. 58(2), pages 120-127, June.
    3. Allan Timmermann, 2007. "An Evaluation of the World Economic Outlook Forecasts," IMF Staff Papers, Palgrave Macmillan, vol. 54(1), pages 1-33, May.
    4. Foltas, Alexander, 2020. "Testing investment forecast efficiency with textual data," Working Papers 19, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    5. Christoph Behrens & Christian Pierdzioch & Marian Risse, 2018. "A test of the joint efficiency of macroeconomic forecasts using multivariate random forests," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 560-572, August.
    6. Jörg Döpke & Ulrich Fritsche, 2006. "Growth and inflation forecasts for Germany a panel-based assessment of accuracy and efficiency," Empirical Economics, Springer, vol. 31(3), pages 777-798, September.
    7. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    8. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    9. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foltas, Alexander, 2024. "Inefficient forecast narratives: A BERT-based approach," Working Papers 45, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    2. Pierdzioch, Christian, 2023. "A bootstrap-based efficiency test of growth and inflation forecasts for Germany," Economics Letters, Elsevier, vol. 224(C).
    3. Foltas, Alexander, 2023. "Quantifying priorities in business cycle reports: Analysis of recurring textual patterns around peaks and troughs," Working Papers 44, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrens, Christoph, 2020. "German trade forecasts since 1970: An evaluation using the panel dimension," Working Papers 26, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    2. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    3. Behrens, Christoph, 2019. "Evaluating the Joint Efficiency of German Trade Forecasts. A nonparametric multivariate approach," Working Papers 9, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    4. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    5. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    6. Yoichi Tsuchiya, 2021. "Thirty‐year assessment of Asian Development Bank's forecasts," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 35(2), pages 18-40, November.
    7. Eicher, Theo S. & Rollinson, Yuan Gao, 2023. "The accuracy of IMF crises nowcasts," International Journal of Forecasting, Elsevier, vol. 39(1), pages 431-449.
    8. Peter, Eckley, 2015. "(Non)rationality of consumer inflation perceptions," MPRA Paper 77082, University Library of Munich, Germany.
    9. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    10. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    11. Pierdzioch, Christian, 2023. "A bootstrap-based efficiency test of growth and inflation forecasts for Germany," Economics Letters, Elsevier, vol. 224(C).
    12. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    13. Hans Christian Müller-Dröge & Tara M. Sinclair & Herman O. Stekler, 2014. "Evaluating Forecasts Of A Vector Of Variables: A German Forecasting Competition," Working Papers 2014-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    14. Klaus-Peter Hellwig, 2018. "Overfitting in Judgment-based Economic Forecasts: The Case of IMF Growth Projections," IMF Working Papers 2018/260, International Monetary Fund.
    15. Eicher, Theo S. & Kawai, Reina, 2023. "IMF trade forecasts for crisis countries: Bias, inefficiency, and their origins," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1615-1639.
    16. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    17. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    18. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    19. Sebastian Bayer & Timo Dimitriadis, 2018. "Regression Based Expected Shortfall Backtesting," Papers 1801.04112, arXiv.org, revised Sep 2019.
    20. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:29:y:2022:i:10:p:867-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.