IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/986.html
   My bibliography  Save this paper

US inflation expectations and heterogeneous loss functions, 1968–2010

Author

Listed:
  • Clements, Michael P.

    (University of Warwick, Department of Economics)

Abstract

The recent literature has suggested that macroeconomic forecasters may have asymmetric loss functions, and that there may be heterogeneity across forecasters in the degree to which they weigh under and over-predictions. Using an individual-level analysis that exploits the SPF respondents’ histogram forecasts, we find little evidence of asymmetric loss for the in‡ation forecasters. Key words: Disagreement ; forecast uncertainty ; asymmetric loss ; Survey of Professional Forecasters JEL Classification: C53 ; E31 ; E37

Suggested Citation

  • Clements, Michael P., 2012. "US inflation expectations and heterogeneous loss functions, 1968–2010," The Warwick Economics Research Paper Series (TWERPS) 986, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:986
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2012/twerp_986.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    2. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    3. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    4. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    5. Victor Zarnowitz, 1969. "The New ASA–NBER Survey of Forecasts by Economic Statisticians," NBER Chapters, in: Supplement to NBER Report Four, pages 1-8, National Bureau of Economic Research, Inc.
    6. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    7. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    8. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    9. Victor Zarnowitz & Louis A. Lambros, 1983. "Consensus and Uncertainty in Economic Prediction," NBER Working Papers 1171, National Bureau of Economic Research, Inc.
    10. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    11. Fair, Ray C & Shiller, Robert J, 1989. "The Informational Context of Ex Ante Forecasts," The Review of Economics and Statistics, MIT Press, vol. 71(2), pages 325-331, May.
    12. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    13. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    14. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    15. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    16. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 293-318.
    17. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    18. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(1), pages 21-40.
    19. Zellner, Arnold, 1986. "Biased predictors, rationality and the evaluation of forecasts," Economics Letters, Elsevier, vol. 21(1), pages 45-48.
    20. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    21. Robert W. Rich & Joseph Tracy, 2003. "Modeling uncertainty: predictive accuracy as a proxy for predictive confidence," Staff Reports 161, Federal Reserve Bank of New York.
    22. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    23. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    24. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    25. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    26. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    27. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    28. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    29. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    30. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    4. Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
    5. repec:wrk:wrkemf:33 is not listed on IDEAS
    6. Zhao, Yongchen, 2023. "Internal consistency of household inflation expectations: Point forecasts vs. density forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1713-1735.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    2. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    3. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    4. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    5. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    6. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    7. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    8. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
    9. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    10. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    11. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    12. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    13. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    16. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    17. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    18. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 690-720, Elsevier.
    19. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    20. Jonas Dovern & Ulrich Fritsche, 2008. "Estimating fundamental cross-section dispersion from fixed event forecasts," Macroeconomics and Finance Series 200801, University of Hamburg, Department of Socioeconomics.

    More about this item

    Keywords

    disagreement ; forecast uncertainty ; asymmetric loss ; survey of professional forecasters jel classification: c53 ; e31 ; e37;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.