IDEAS home Printed from https://ideas.repec.org/a/eee/japwor/v71y2024ics0922142524000343.html
   My bibliography  Save this article

A nowcasting model of industrial production using alternative data and machine learning approaches

Author

Listed:
  • Furukawa, Kakuho
  • Hisano, Ryohei
  • Minoura, Yukio
  • Yagi, Tomoyuki

Abstract

Recent years have seen a growing trend to utilize "alternative data" in addition to traditional statistical data in order to understand and assess economic conditions in real time. In this paper, we construct a nowcasting model for the Indices of Industrial Production (IIP), which measure production activity in the manufacturing sector in Japan. The model has the following characteristics: First, it uses alternative data (mobility data and electricity demand data) that is available in real-time and can nowcast the IIP one to two months before their official release. Second, the model employs machine learning techniques to improve the nowcasting accuracy by endogenously changing the mixing ratio of nowcast values based on traditional economic statistics (the Indices of Industrial Production Forecast) and nowcast values based on alternative data, depending on the economic situation. The estimation results show that by applying machine learning techniques to alternative data, production activity can be nowcasted with high accuracy, including when it went through large fluctuations during the spread of the COVID-19 pandemic.

Suggested Citation

  • Furukawa, Kakuho & Hisano, Ryohei & Minoura, Yukio & Yagi, Tomoyuki, 2024. "A nowcasting model of industrial production using alternative data and machine learning approaches," Japan and the World Economy, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:japwor:v:71:y:2024:i:c:s0922142524000343
    DOI: 10.1016/j.japwor.2024.101271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0922142524000343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.japwor.2024.101271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Industrial production; Mobility data; Electricity data; Nowcasting; Machine learning; COVID-19;
    All these keywords.

    JEL classification:

    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:japwor:v:71:y:2024:i:c:s0922142524000343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505557 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.