IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v146y2008i1p170-184.html
   My bibliography  Save this article

Testing for structural change in regression quantiles

Author

Listed:
  • Qu, Zhongjun

Abstract

Most studies in the structural change literature focus solely on the conditional mean, while under various circumstances, structural change in the conditional distribution or in conditional quantiles is of key importance. This paper proposes several tests for structural change in regression quantiles. Two types of statistics are considered, namely, a fluctuation type statistic based on the subgradient and a Wald type statistic, based on comparing parameter estimates obtained from different subsamples. The former requires estimating the model under the null hypothesis, and the latter involves estimation under the alternative hypothesis. The tests proposed can be used to test for structural change occurring in a pre-specified quantile, or across quantiles, which can be viewed as testing for change in the conditional distribution with a linear specification of the conditional quantile function. Both single and multiple structural changes are considered. We derive the limiting distributions under the null hypothesis, and show they are nuisance parameter free and can be easily simulated. A simulation study is conducted to assess the size and power in finite samples.

Suggested Citation

  • Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
  • Handle: RePEc:eee:econom:v:146:y:2008:i:1:p:170-184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00094-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    3. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    4. Andrews, Donald W. K. & Lee, Inpyo & Ploberger, Werner, 1996. "Optimal changepoint tests for normal linear regression," Journal of Econometrics, Elsevier, vol. 70(1), pages 9-38, January.
    5. Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(1), pages 156-187, February.
    6. Atsushi Inoue, "undated". "Testing Change in Time Series," Computing in Economics and Finance 1997 7, Society for Computational Economics.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    9. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    10. Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
    11. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    12. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    13. Bai, Jushan, 1996. "Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach," Econometrica, Econometric Society, vol. 64(3), pages 597-622, May.
    14. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    15. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    16. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    17. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    18. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    19. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    20. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    21. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    22. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    4. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    5. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    6. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    7. Fabio Busetti, 2012. "On detecting end-of-sample instabilities," Temi di discussione (Economic working papers) 881, Bank of Italy, Economic Research and International Relations Area.
    8. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    9. Yazgan, M. Ege & Özkan, Harun, 2015. "Detecting structural changes using wavelets," Finance Research Letters, Elsevier, vol. 12(C), pages 23-37.
    10. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    11. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    12. Burcu Kapar & William Pouliot, 2013. "Multiple Change-Point Detection in Linear Regression Models via U-Statistic Type Processes," Discussion Papers 13-13, Department of Economics, University of Birmingham.
    13. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Esteve Vicente & Prats Maria A., 2021. "Structural Breaks and Explosive Behavior in the Long-Run: The Case of Australian Real House Prices, 1870–2020," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 15(1), pages 72-84, January.
    15. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    16. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    17. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    18. Vicente Esteve & Francisco Requena, 2006. "A Cointegration Analysis of Car Advertising and Sales Data in the Presence of Structural Change," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 13(1), pages 111-128.
    19. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    20. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:146:y:2008:i:1:p:170-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.