Predicting European stock returns using machine learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s43546-023-00487-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bryan T. Kelly & Semyon Malamud & Kangying Zhou, 2022. "The Virtue of Complexity in Return Prediction," NBER Working Papers 30217, National Bureau of Economic Research, Inc.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- John Y. Campbell, Robert J. Shiller, 1988.
"The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors,"
The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
- John Y. Campbell & Robert J. Shiller, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," NBER Working Papers 2100, National Bureau of Economic Research, Inc.
- Robert J. Shiller & John Y. Campbell, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Cowles Foundation Discussion Papers 812, Cowles Foundation for Research in Economics, Yale University.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020.
"Dissecting Characteristics Nonparametrically,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," NBER Working Papers 23227, National Bureau of Economic Research, Inc.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2018. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 7187, CESifo.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 6391, CESifo.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Stefano Giglio & Dacheng Xiu, 2021. "Asset Pricing with Omitted Factors," Journal of Political Economy, University of Chicago Press, vol. 129(7), pages 1947-1990.
- Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
- Nathaniel Light & Denys Maslov & Oleg Rytchkov, 2017. "Aggregation of Information About the Cross Section of Stock Returns: A Latent Variable Approach," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1339-1381.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Vaibhav Lalwani & Vedprakash Vasantrao Meshram, 2022. "The cross-section of Indian stock returns: evidence using machine learning," Applied Economics, Taylor & Francis Journals, vol. 54(16), pages 1814-1828, April.
- G. Andrew Karolyi, 2016. "Home Bias, an Academic Puzzle," Review of Finance, European Finance Association, vol. 20(6), pages 2049-2078.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Jian Chen & Jiaquan Yao & Qunzi Zhang & Xiaoneng Zhu, 2023. "Global Disaster Risk Matters," Management Science, INFORMS, vol. 69(1), pages 576-597, January.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- repec:ipg:wpaper:2013-020 is not listed on IDEAS
- Bryan Kelly & Semyon Malamud & Kangying Zhou, 2024. "The Virtue of Complexity in Return Prediction," Journal of Finance, American Finance Association, vol. 79(1), pages 459-503, February.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Yuan Liao & Xinjie Ma & Andreas Neuhierl & Zhentao Shi, 2023. "Economic Forecasts Using Many Noises," Papers 2312.05593, arXiv.org, revised Dec 2023.
- Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
- Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
- Vigo Pereira, Caio, 2021.
"Portfolio efficiency with high-dimensional data as conditioning information,"
International Review of Financial Analysis, Elsevier, vol. 77(C).
- Caio Vigo Pereira, 2020. "Portfolio Efficiency with High-Dimensional Data as Conditioning Information," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202015, University of Kansas, Department of Economics, revised Sep 2020.
- Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Eduard Baitinger, 2021. "Forecasting asset returns with network‐based metrics: A statistical and economic analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1342-1375, November.
More about this item
Keywords
Machine learning; Stock returns predictability; Forecasting; European stock market;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G0 - Financial Economics - - General
- G1 - Financial Economics - - General Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:3:y:2023:i:7:d:10.1007_s43546-023-00487-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.