IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v31y2015i3p587-597.html
   My bibliography  Save this article

Testing for multiple-period predictability between serially dependent time series

Author

Listed:
  • Heaton, Chris

Abstract

This paper reports the results of a simulation study that considers the finite-sample performances of a range of approaches for testing multiple-period predictability between two potentially serially correlated time series. In many empirically relevant situations, but not all, most of the test statistics considered are significantly oversized. In contrast, both an analytical approach proposed in this paper and a bootstrap are found to have accurate empirical sizes. In a small number of cases, the bootstrap is found to have a superior power. The test procedures considered are applied to an empirical analysis of the predictive power of a Phillips curve model during the ‘great moderation’ period, which illustrates the practical importance of using test statistics with accurate empirical sizes.

Suggested Citation

  • Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
  • Handle: RePEc:eee:intfor:v:31:y:2015:i:3:p:587-597
    DOI: 10.1016/j.ijforecast.2014.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014001800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2014.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    2. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    3. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    4. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    6. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    7. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    8. James H. Stock & Mark W. Watson, 2003. "Has the business cycle changed?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 9-56.
    9. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
    10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    11. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    12. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
    13. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
    14. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    15. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    16. Stockton, David J & Glassman, James E, 1987. "An Evaluation of the Forecast Performance of Alternative Models of Inflation," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 108-117, February.
    17. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    18. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    19. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    20. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    21. Richardson, Matthew & Smith, Tom, 1991. "Tests of Financial Models in the Presence of Overlapping Observations," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 227-254.
    22. Mark Britten-Jones & Anthony Neuberger & Ingmar Nolte, 2011. "Improved Inference in Regression with Overlapping Observations," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(5-6), pages 657-683, June.
    23. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q I), pages 32-44.
    24. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    25. Min Wei & Jonathan H. Wright, 2009. "Confidence intervals for long-horizon predictive regressions via reverse regressions," Finance and Economics Discussion Series 2009-27, Board of Governors of the Federal Reserve System (U.S.).
    26. Smith, Jeremy & Yadav, Sanjay, 1996. "A comparison of alternative covariance matrices for models with over-lapping observations," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 813-823, October.
    27. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    28. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadhri, Sinda & Ftiti, Zied, 2017. "Stock return predictability in emerging markets: Does the choice of predictors and models matter across countries?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 39-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    2. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    3. Jacob Boudoukh & Ronen Israel & Matthew P. Richardson, 2020. "Biases in Long-Horizon Predictive Regressions," NBER Working Papers 27410, National Bureau of Economic Research, Inc.
    4. Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018. "Inflation as a global phenomenon—Some implications for inflation modeling and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
    5. Charlotte S. Hansen & Bjorn E. Tuypens, 2004. "Long-Run Regressions: Theory and Application to US Asset Markets," Finance 0410018, University Library of Munich, Germany.
    6. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    7. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    8. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    9. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    10. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    11. João Valle e Azevedo, 2010. "Forecasting Inflation (and the Business Cycle?) with Monetary Aggregates," Working Papers w201024, Banco de Portugal, Economics and Research Department.
    12. Pincheira-Brown, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2019. "Forecasting inflation in Latin America with core measures," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1060-1071.
    13. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    14. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    15. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    16. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    17. Mazumder, Sandeep, 2011. "Cost-based Phillips Curve forecasts of inflation," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 553-567.
    18. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    19. Lillian Kamal, 2014. "Do GAP Models Still have a Role to Play in Forecasting Inflation?," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 8(3), pages 1-12.
    20. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:3:p:587-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.